Last commit not found
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
import tempfile | |
import os | |
MODEL_NAME = "dmatekenya/whisper-large-v3-chichewa" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("openai/whisper-large-v3") | |
# assert tokenizer.is_fast | |
# tokenizer.save_pretrained("...") | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
tokenizer=tokenizer, | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
demo = gr.Blocks() | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
# gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"), | |
], | |
outputs="text", | |
# layout="horizontal", | |
# theme="huggingface", | |
title="Whisper Large V3: Transcribe Audio", | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
with demo: | |
gr.TabbedInterface([file_transcribe], [ "Audio file"]) | |
demo.launch() | |