Spaces:
cbhhhcb
/
Running on Zero

File size: 3,731 Bytes
6dfec6d
23e6529
 
 
 
 
1d91c75
23e6529
 
 
 
 
 
 
 
8d737ed
 
23e6529
 
 
 
 
6dfec6d
 
f5b458f
23e6529
6dfec6d
23e6529
 
 
6dfec6d
23e6529
 
 
6dfec6d
23e6529
 
 
 
 
6dfec6d
23e6529
 
 
 
 
 
6dfec6d
 
 
23e6529
 
 
 
 
 
 
6dfec6d
 
 
 
101d1a7
53a6b0f
6dfec6d
 
53a6b0f
6dfec6d
 
 
 
 
53a6b0f
6dfec6d
 
 
 
 
53a6b0f
6dfec6d
 
 
 
23e6529
6dfec6d
 
 
 
 
 
 
 
 
 
 
23e6529
6dfec6d
 
 
 
23e6529
6dfec6d
53a6b0f
 
1d91c75
 
23e6529
6dfec6d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import spaces
import os
import random
import argparse

import torch
import gradio as gr
import numpy as np

import ChatTTS

print("loading ChatTTS model...")
chat = ChatTTS.Chat()
chat.load_models()



def generate_seed():
    new_seed = random.randint(1, 100000000)
    return {
        "__type__": "update",
        "value": new_seed
        }

@spaces.GPU
def generate_audio(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag):

    torch.manual_seed(audio_seed_input)
    rand_spk = torch.randn(768)
    params_infer_code = {
        'spk_emb': rand_spk, 
        'temperature': temperature,
        'top_P': top_P,
        'top_K': top_K,
        }
    params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'}
    
    torch.manual_seed(text_seed_input)

    if refine_text_flag:
        text = chat.infer(text, 
                          skip_refine_text=False,
                          refine_text_only=True,
                          params_refine_text=params_refine_text,
                          params_infer_code=params_infer_code
                          )
    
    wav = chat.infer(text, 
                     skip_refine_text=True, 
                     params_refine_text=params_refine_text, 
                     params_infer_code=params_infer_code
                     )
    
    audio_data = np.array(wav[0]).flatten()
    sample_rate = 24000
    text_data = text[0] if isinstance(text, list) else text

    return [(sample_rate, audio_data), text_data]


with gr.Blocks() as demo:
    gr.Markdown("# Deployed by [ChatTTS.co](https://chattts.co)")

    default_text = "四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。"        
    text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text)

    with gr.Row():
        refine_text_checkbox = gr.Checkbox(label="Refine text", value=True)
        temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature")
        top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P")
        top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K")

    with gr.Row():
        audio_seed_input = gr.Number(value=42, label="Audio Seed")
        generate_audio_seed = gr.Button("\U0001F3B2")
        text_seed_input = gr.Number(value=42, label="Text Seed")
        generate_text_seed = gr.Button("\U0001F3B2")

    generate_button = gr.Button("Generate")
        
    text_output = gr.Textbox(label="Output Text", interactive=False)
    audio_output = gr.Audio(label="Output Audio")

    generate_audio_seed.click(generate_seed, 
                              inputs=[], 
                              outputs=audio_seed_input)
        
    generate_text_seed.click(generate_seed, 
                             inputs=[], 
                             outputs=text_seed_input)
        
    generate_button.click(generate_audio, 
                          inputs=[text_input, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox], 
                          outputs=[audio_output, text_output])

parser = argparse.ArgumentParser(description='ChatTTS demo Launch')
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name')
parser.add_argument('--server_port', type=int, default=8080, help='Server port')
args = parser.parse_args()

    # demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True)




if __name__ == '__main__':
    demo.launch()