|
import streamlit as st |
|
from PIL import Image |
|
|
|
|
|
st.title("Chris Capobianco's ML Portfolio") |
|
|
|
st.markdown('Hello, welcome to my ML portfolio.') |
|
st.markdown('Please have a look at the descriptions below, and select a project from the sidebar.') |
|
|
|
st.header('Projects', divider='red') |
|
|
|
do = Image.open("assets/document.jpg") |
|
mv = Image.open("assets/movie.jpg") |
|
|
|
sm = Image.open("assets/stock-market.png") |
|
mu = Image.open("assets/music.jpg") |
|
llm = Image.open("assets/llm.png") |
|
ear = Image.open("assets/earthquake.png") |
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Document Classifier", divider="green") |
|
st.markdown(""" |
|
- Used OCR text and a Random Forest classification model to predict a document's classification |
|
- Trained on Real World Documents Collection at Kaggle |
|
""") |
|
with image_column: |
|
st.image(do) |
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Movie Recommendation", divider="green") |
|
st.markdown(""" |
|
- Created a content based recommendation system using cosine similarity |
|
- Trained on almost 5k movies and credits from the TMDB dataset available at Kaggle |
|
""") |
|
with image_column: |
|
st.image(mv) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Stock Market Forecast", divider="green") |
|
st.markdown(""" |
|
- Created a two layer GRU model to forecast of stock prices |
|
- Trained on 2006-2018 closing prices of four well known stocks |
|
""") |
|
with image_column: |
|
st.image(sm) |
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Generative Music", divider="green") |
|
st.markdown(""" |
|
- Created a LSTM model to generate music |
|
- Trained on MIDI files from Final Fantasy series |
|
""") |
|
with image_column: |
|
st.image(mu) |
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Fine Tuned LLM", divider="green") |
|
st.markdown(""" |
|
- Fine tuned a LLM to act like math assistant |
|
- The base model is Meta's Llama 3.1 (8B) Instruct |
|
""") |
|
with image_column: |
|
st.image(llm) |
|
|
|
with st.container(): |
|
text_column, image_column = st.columns((3,1)) |
|
with text_column: |
|
st.subheader("Urban Safety Planner", divider="green") |
|
st.markdown(""" |
|
- Analyze Earthquake and Population Density data |
|
- Locate areas that need extra earthquake reinforcement |
|
""") |
|
with image_column: |
|
st.image(ear) |