import streamlit as st from PIL import Image # Page title st.title("Chris Capobianco's ML Portfolio") st.markdown('Hello, welcome to my ML portfolio.') st.markdown('Please have a look at the descriptions below, and select a project from the sidebar.') st.header('Projects', divider='red') do = Image.open("assets/document.jpg") mv = Image.open("assets/movie.jpg") # wp = Image.open("assets/weather.png") sm = Image.open("assets/stock-market.png") mu = Image.open("assets/music.jpg") llm = Image.open("assets/llm.png") ear = Image.open("assets/earthquake.png") with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Document Classifier", divider="green") st.markdown(""" - Used OCR text and a Random Forest classification model to predict a document's classification - Trained on Real World Documents Collection at Kaggle """) with image_column: st.image(do) with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Movie Recommendation", divider="green") st.markdown(""" - Created a content based recommendation system using cosine similarity - Trained on almost 5k movies and credits from the TMDB dataset available at Kaggle """) with image_column: st.image(mv) # with st.container(): # text_column, image_column = st.columns((3,1)) # with text_column: # st.subheader("Weather Classification", divider="green") # st.markdown(""" # - Created a Random Forest classification model to predict the weather # - Trained on three years of data for the city of Seattle, Washington # """) # with image_column: # st.image(wp) with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Stock Market Forecast", divider="green") st.markdown(""" - Created a two layer GRU model to forecast of stock prices - Trained on 2006-2018 closing prices of four well known stocks """) with image_column: st.image(sm) with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Generative Music", divider="green") st.markdown(""" - Created a LSTM model to generate music - Trained on MIDI files from Final Fantasy series """) with image_column: st.image(mu) with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Fine Tuned LLM", divider="green") st.markdown(""" - Fine tuned a LLM to act like math assistant - The base model is Meta's Llama 3.1 (8B) Instruct """) with image_column: st.image(llm) with st.container(): text_column, image_column = st.columns((3,1)) with text_column: st.subheader("Urban Safety Planner", divider="green") st.markdown(""" - Analyze Earthquake and Population Density data - Locate areas that need extra earthquake reinforcement """) with image_column: st.image(ear)