File size: 6,284 Bytes
b884aa9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import threading  # to allow streaming response
import time  # to pave the deliver of the message

import gradio  # for the interface
import spaces  # for GPU
import transformers  # to load an LLM
import langchain_community.vectorstores  # to load the publication vectorstore
import langchain_huggingface  # for embeddings

# The greeting message
GREETING = (
    "Howdy! "
    "I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about additive manufacturing research. "
    "I still make some mistakes though. "
    "What can I tell you about today?"
)

# Example queries
EXAMPLE_QUERIES = [
    "Tell me about new research at the intersection of additive manufacturing and machine learning.",
]

# The embedding model name
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"

# The LLM model name
LLM_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"

# The number of publications to retrieve
PUBLICATIONS_TO_RETRIEVE = 5


def embedding(
    model_name: str = "all-MiniLM-L12-v2",
    device: str = "mps",
    normalize_embeddings: bool = False,
) -> langchain_huggingface.HuggingFaceEmbeddings:
    """
    Get the embedding function
    :param model_name: The model name
    :type model_name: str
    :param device: The device to use
    :type device: str
    :param normalize_embeddings: Whether to normalize embeddings
    :type normalize_embeddings: bool

    :return: The embedding function
    :rtype: langchain_huggingface.HuggingFaceEmbeddings
    """
    return langchain_huggingface.HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs={"device": device},
        encode_kwargs={"normalize_embeddings": normalize_embeddings},
    )


def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
    """
    Load the publication vectorstore
    :return: The publication vectorstore
    :rtype: langchain_community.vectorstores.FAISS
    """
    return langchain_community.vectorstores.FAISS.load_local(
        folder_path="publication_vectorstore",
        embeddings=embedding(),
        allow_dangerous_deserialization=True,
    )


publication_vectorstore = load_publication_vectorstore()

# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(
    LLM_MODEL_NAME, trust_remote_code=True
)
streamer = transformers.TextIteratorStreamer(
    tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
    LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
)


def preprocess(query: str, k: int) -> tuple[str, str]:
    """
    Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
    Args:
        query (str): The user's query
        k (int): The number of results to return
    Returns:
        tuple[str, str]: A tuple containing the prompt and references
    """
    documents = publication_vectorstore.search(
        query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
    )

    prompt = (
        "You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
        "Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
        "The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
        "DO NOT list references at the end of the answer.\n\n"
        "===== RESEARCH_EXCERPTS =====:\n{{EXCERPTS_GO_HERE}}\n\n"
        "===== USER_QUERY =====:\n{{QUERY_GOES_HERE}}\n\n"
        "===== ANSWER =====:\n"
    )

    research_excerpts = [
        '"... ' + document.page_content + '..."' for document in documents
    ]

    prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", "\n\n".join(research_excerpts))
    prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)

    print(prompt)

    return prompt, ""


@spaces.GPU
def reply(message: str, history: list[str]) -> str:
    """
    This function is responsible for crafting a response
    Args:
        message (str): The user's message
        history (list[str]): The conversation history
    Returns:
        str: The AI's response
    """

    # Apply preprocessing
    message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)

    # This is some handling that is applied to the history variable to put it in a good format
    history_transformer_format = [
        {"role": role, "content": message_pair[idx]}
        for message_pair in history
        for idx, role in enumerate(["user", "assistant"])
        if message_pair[idx] is not None
    ] + [{"role": "user", "content": message}]

    # Stream a response from pipe
    text = tokenizer.apply_chat_template(
        history_transformer_format, tokenize=False, add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")

    generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
    t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
    t.start()

    partial_message = ""
    for new_token in streamer:
        if new_token != "<":
            partial_message += new_token
            time.sleep(0.01)
            yield partial_message

    yield partial_message + "\n\n" + bypass


# Create and run the gradio interface
gradio.ChatInterface(
    reply,
    examples=EXAMPLE_QUERIES,
    chatbot=gradio.Chatbot(
        show_label=False,
        show_share_button=False,
        show_copy_button=False,
        value=[[None, GREETING]],
        avatar_images=(
            "https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
            "https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
        ),
        height="60vh",
        bubble_full_width=False,
    ),
    retry_btn=None,
    undo_btn=None,
    clear_btn=None,
    theme=gradio.themes.Default(font=[gradio.themes.GoogleFont("Zilla Slab")]),
).launch(debug=True)