Spaces:
Sleeping
Sleeping
File size: 6,284 Bytes
b884aa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import threading # to allow streaming response
import time # to pave the deliver of the message
import gradio # for the interface
import spaces # for GPU
import transformers # to load an LLM
import langchain_community.vectorstores # to load the publication vectorstore
import langchain_huggingface # for embeddings
# The greeting message
GREETING = (
"Howdy! "
"I'm an AI agent that uses [retrieval-augmented generation](https://en.wikipedia.org/wiki/Retrieval-augmented_generation) pipeline to answer questions about additive manufacturing research. "
"I still make some mistakes though. "
"What can I tell you about today?"
)
# Example queries
EXAMPLE_QUERIES = [
"Tell me about new research at the intersection of additive manufacturing and machine learning.",
]
# The embedding model name
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
# The LLM model name
LLM_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
# The number of publications to retrieve
PUBLICATIONS_TO_RETRIEVE = 5
def embedding(
model_name: str = "all-MiniLM-L12-v2",
device: str = "mps",
normalize_embeddings: bool = False,
) -> langchain_huggingface.HuggingFaceEmbeddings:
"""
Get the embedding function
:param model_name: The model name
:type model_name: str
:param device: The device to use
:type device: str
:param normalize_embeddings: Whether to normalize embeddings
:type normalize_embeddings: bool
:return: The embedding function
:rtype: langchain_huggingface.HuggingFaceEmbeddings
"""
return langchain_huggingface.HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={"device": device},
encode_kwargs={"normalize_embeddings": normalize_embeddings},
)
def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
"""
Load the publication vectorstore
:return: The publication vectorstore
:rtype: langchain_community.vectorstores.FAISS
"""
return langchain_community.vectorstores.FAISS.load_local(
folder_path="publication_vectorstore",
embeddings=embedding(),
allow_dangerous_deserialization=True,
)
publication_vectorstore = load_publication_vectorstore()
# Create an LLM pipeline that we can send queries to
tokenizer = transformers.AutoTokenizer.from_pretrained(
LLM_MODEL_NAME, trust_remote_code=True
)
streamer = transformers.TextIteratorStreamer(
tokenizer, skip_prompt=True, skip_special_tokens=True
)
chatmodel = transformers.AutoModelForCausalLM.from_pretrained(
LLM_MODEL_NAME, device_map="auto", torch_dtype="auto", trust_remote_code=True
)
def preprocess(query: str, k: int) -> tuple[str, str]:
"""
Searches the dataset for the top k most relevant papers to the query and returns a prompt and references
Args:
query (str): The user's query
k (int): The number of results to return
Returns:
tuple[str, str]: A tuple containing the prompt and references
"""
documents = publication_vectorstore.search(
query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
)
prompt = (
"You are an AI assistant who delights in helping people learn about research from the Design Research Collective, which is a research lab at Carnegie Mellon University led by Professor Chris McComb. "
"Your main task is to provide a concise ANSWER to the USER_QUERY that includes as many of the RESEARCH_ABSTRACTS as possible. "
"The RESEARCH_ABSTRACTS are provided in the `.bibtex` format. Your ANSWER should contain citations to the RESEARCH_ABSTRACTS using (AUTHOR, YEAR) format. "
"DO NOT list references at the end of the answer.\n\n"
"===== RESEARCH_EXCERPTS =====:\n{{EXCERPTS_GO_HERE}}\n\n"
"===== USER_QUERY =====:\n{{QUERY_GOES_HERE}}\n\n"
"===== ANSWER =====:\n"
)
research_excerpts = [
'"... ' + document.page_content + '..."' for document in documents
]
prompt = prompt.replace("{{EXCERPTS_GO_HERE}}", "\n\n".join(research_excerpts))
prompt = prompt.replace("{{QUERY_GOES_HERE}}", query)
print(prompt)
return prompt, ""
@spaces.GPU
def reply(message: str, history: list[str]) -> str:
"""
This function is responsible for crafting a response
Args:
message (str): The user's message
history (list[str]): The conversation history
Returns:
str: The AI's response
"""
# Apply preprocessing
message, bypass = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
# This is some handling that is applied to the history variable to put it in a good format
history_transformer_format = [
{"role": role, "content": message_pair[idx]}
for message_pair in history
for idx, role in enumerate(["user", "assistant"])
if message_pair[idx] is not None
] + [{"role": "user", "content": message}]
# Stream a response from pipe
text = tokenizer.apply_chat_template(
history_transformer_format, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda:0")
generate_kwargs = dict(model_inputs, streamer=streamer, max_new_tokens=512)
t = threading.Thread(target=chatmodel.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != "<":
partial_message += new_token
time.sleep(0.01)
yield partial_message
yield partial_message + "\n\n" + bypass
# Create and run the gradio interface
gradio.ChatInterface(
reply,
examples=EXAMPLE_QUERIES,
chatbot=gradio.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=False,
value=[[None, GREETING]],
avatar_images=(
"https://cdn.dribbble.com/users/316121/screenshots/2333676/11-04_scotty-plaid_dribbble.png",
"https://media.thetab.com/blogs.dir/90/files/2021/06/screenshot-2021-06-10-at-110730-1024x537.png",
),
height="60vh",
bubble_full_width=False,
),
retry_btn=None,
undo_btn=None,
clear_btn=None,
theme=gradio.themes.Default(font=[gradio.themes.GoogleFont("Zilla Slab")]),
).launch(debug=True)
|