Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,12 +16,12 @@ GREETING = (
|
|
16 |
|
17 |
# Constants
|
18 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
|
19 |
-
LLM_MODEL_NAME = "Qwen/Qwen2.5-
|
20 |
PUBLICATIONS_TO_RETRIEVE = 10
|
21 |
|
22 |
|
23 |
def embedding(
|
24 |
-
device: str = "
|
25 |
) -> langchain_huggingface.HuggingFaceEmbeddings:
|
26 |
"""Loads embedding model with specified device and normalization."""
|
27 |
return langchain_huggingface.HuggingFaceEmbeddings(
|
@@ -33,15 +33,11 @@ def embedding(
|
|
33 |
|
34 |
def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
|
35 |
"""Load the publication vectorstore safely."""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
)
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Error loading vectorstore: {e}")
|
44 |
-
return None
|
45 |
|
46 |
|
47 |
# Load vectorstore and models
|
@@ -60,9 +56,9 @@ def preprocess(query: str, k: int) -> str:
|
|
60 |
"You are an AI assistant who enjoys helping users learn about research. "
|
61 |
"Answer the following question on additive manufacturing research using the RESEARCH_EXCERPTS. "
|
62 |
"Provide a concise ANSWER based on these excerpts. Avoid listing references.\n\n"
|
63 |
-
"===== RESEARCH_EXCERPTS
|
64 |
-
"===== USER_QUERY
|
65 |
-
"===== ANSWER
|
66 |
)
|
67 |
|
68 |
prompt = prompt_template.format(
|
@@ -74,7 +70,7 @@ def preprocess(query: str, k: int) -> str:
|
|
74 |
|
75 |
|
76 |
@spaces.GPU
|
77 |
-
def reply(message: str
|
78 |
"""
|
79 |
Generates a response to the user’s message.
|
80 |
"""
|
@@ -83,7 +79,7 @@ def reply(message: str, history: list[str]) -> str:
|
|
83 |
pipe = transformers.pipeline("text-generation", model="Qwen/Qwen2.5-7B-Instruct")
|
84 |
|
85 |
message = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
|
86 |
-
return pipe(message,
|
87 |
|
88 |
|
89 |
# Example Queries for Interface
|
|
|
16 |
|
17 |
# Constants
|
18 |
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
|
19 |
+
LLM_MODEL_NAME = "Qwen/Qwen2.5-0.5B-Instruct"
|
20 |
PUBLICATIONS_TO_RETRIEVE = 10
|
21 |
|
22 |
|
23 |
def embedding(
|
24 |
+
device: str = "mps", normalize_embeddings: bool = False
|
25 |
) -> langchain_huggingface.HuggingFaceEmbeddings:
|
26 |
"""Loads embedding model with specified device and normalization."""
|
27 |
return langchain_huggingface.HuggingFaceEmbeddings(
|
|
|
33 |
|
34 |
def load_publication_vectorstore() -> langchain_community.vectorstores.FAISS:
|
35 |
"""Load the publication vectorstore safely."""
|
36 |
+
return langchain_community.vectorstores.FAISS.load_local(
|
37 |
+
folder_path="publication_vectorstore",
|
38 |
+
embeddings=embedding(),
|
39 |
+
allow_dangerous_deserialization=True,
|
40 |
+
)
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
# Load vectorstore and models
|
|
|
56 |
"You are an AI assistant who enjoys helping users learn about research. "
|
57 |
"Answer the following question on additive manufacturing research using the RESEARCH_EXCERPTS. "
|
58 |
"Provide a concise ANSWER based on these excerpts. Avoid listing references.\n\n"
|
59 |
+
"===== RESEARCH_EXCERPTS =====\n{research_excerpts}\n\n"
|
60 |
+
"===== USER_QUERY =====\n{query}\n\n"
|
61 |
+
"===== ANSWER =====\n"
|
62 |
)
|
63 |
|
64 |
prompt = prompt_template.format(
|
|
|
70 |
|
71 |
|
72 |
@spaces.GPU
|
73 |
+
def reply(message: str) -> str:
|
74 |
"""
|
75 |
Generates a response to the user’s message.
|
76 |
"""
|
|
|
79 |
pipe = transformers.pipeline("text-generation", model="Qwen/Qwen2.5-7B-Instruct")
|
80 |
|
81 |
message = preprocess(message, PUBLICATIONS_TO_RETRIEVE)
|
82 |
+
return pipe(message, max_new_tokens=512, device="mps")[0]["generated_text"]
|
83 |
|
84 |
|
85 |
# Example Queries for Interface
|