Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio # Interface handling
|
2 |
import spaces # For GPU
|
3 |
import transformers # LLM Loading
|
4 |
import langchain_community.vectorstores # Vectorstore for publications
|
5 |
import langchain_huggingface # Embeddings
|
6 |
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
"to answer questions about additive manufacturing research. "
|
13 |
-
"I'm still improving, so bear with me if I make any mistakes. "
|
14 |
-
"What can I help you with today?"
|
15 |
-
)
|
16 |
-
|
17 |
-
# Constants
|
18 |
-
EMBEDDING_MODEL_NAME = "all-MiniLM-L12-v2"
|
19 |
-
LLM_MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct"
|
20 |
-
PUBLICATIONS_TO_RETRIEVE = 10
|
21 |
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
) -> langchain_huggingface.HuggingFaceEmbeddings:
|
26 |
-
"""Loads embedding model with specified device and normalization."""
|
27 |
-
return langchain_huggingface.HuggingFaceEmbeddings(
|
28 |
-
model_name=EMBEDDING_MODEL_NAME,
|
29 |
-
model_kwargs={"device": device},
|
30 |
-
encode_kwargs={"normalize_embeddings": normalize_embeddings},
|
31 |
-
)
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
return langchain_community.vectorstores.FAISS.load_local(
|
37 |
-
folder_path="publication_vectorstore",
|
38 |
-
embeddings=embedding(),
|
39 |
-
allow_dangerous_deserialization=True,
|
40 |
-
)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
|
|
45 |
|
46 |
|
47 |
-
def preprocess(query: str
|
48 |
"""
|
49 |
Generates a prompt based on the top k documents matching the query.
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
-
documents = publication_vectorstore.search(query, k=k, search_type="similarity")
|
52 |
-
research_excerpts = [f'"... {doc.page_content}..."' for doc in documents]
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
"Answer the following question on additive manufacturing research using the RESEARCH_EXCERPTS. "
|
58 |
-
"Provide a concise ANSWER based on these excerpts. Avoid listing references.\n\n"
|
59 |
-
"===== RESEARCH_EXCERPTS =====\n{research_excerpts}\n\n"
|
60 |
-
"===== USER_QUERY =====\n{query}\n\n"
|
61 |
-
"===== ANSWER =====\n"
|
62 |
)
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
research_excerpts="\n\n".join(research_excerpts), query=query
|
66 |
)
|
67 |
|
68 |
-
|
|
|
|
|
69 |
return prompt
|
70 |
|
71 |
|
@@ -73,15 +106,22 @@ def preprocess(query: str, k: int) -> str:
|
|
73 |
def reply(message: str, history: list[str]) -> str:
|
74 |
"""
|
75 |
Generates a response to the user’s message.
|
76 |
-
"""
|
77 |
-
# Preprocess message
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
|
87 |
# Example Queries for Interface
|
|
|
1 |
+
"""
|
2 |
+
This script sets up a Gradio interface for querying an AI assistant about additive manufacturing research.
|
3 |
+
It uses a vectorstore to retrieve relevant research excerpts and a language model to generate responses.
|
4 |
+
|
5 |
+
Modules:
|
6 |
+
- gradio: Interface handling
|
7 |
+
- spaces: For GPU
|
8 |
+
- transformers: LLM Loading
|
9 |
+
- langchain_community.vectorstores: Vectorstore for publications
|
10 |
+
- langchain_huggingface: Embeddings
|
11 |
+
|
12 |
+
Constants:
|
13 |
+
- PUBLICATIONS_TO_RETRIEVE: The number of publications to retrieve for the prompt
|
14 |
+
- RAG_TEMPLATE: The template for the RAG prompt
|
15 |
+
|
16 |
+
Functions:
|
17 |
+
- preprocess(query: str) -> str: Generates a prompt based on the top k documents matching the query.
|
18 |
+
- reply(message: str, history: list[str]) -> str: Generates a response to the user’s message.
|
19 |
+
|
20 |
+
Example Queries:
|
21 |
+
- "What is multi-material 3D printing?"
|
22 |
+
- "How is additive manufacturing being applied in aerospace?"
|
23 |
+
- "Tell me about innovations in metal 3D printing techniques."
|
24 |
+
- "What are some sustainable materials for 3D printing?"
|
25 |
+
- "What are the biggest challenges with support structures in additive manufacturing?"
|
26 |
+
- "How is 3D printing impacting the medical field?"
|
27 |
+
- "What are some common applications of additive manufacturing in industry?"
|
28 |
+
- "What are the benefits and limitations of using polymers in 3D printing?"
|
29 |
+
- "Tell me about the environmental impacts of additive manufacturing."
|
30 |
+
- "What are the primary limitations of current 3D printing technologies?"
|
31 |
+
- "How are researchers improving the speed of 3D printing processes?"
|
32 |
+
- "What are the best practices for managing post-processing in additive manufacturing?"
|
33 |
+
"""
|
34 |
+
|
35 |
import gradio # Interface handling
|
36 |
import spaces # For GPU
|
37 |
import transformers # LLM Loading
|
38 |
import langchain_community.vectorstores # Vectorstore for publications
|
39 |
import langchain_huggingface # Embeddings
|
40 |
|
41 |
+
# The number of publications to retrieve for the prompt
|
42 |
+
PUBLICATIONS_TO_RETRIEVE = 5
|
43 |
|
44 |
+
# The template for the RAG prompt
|
45 |
+
RAG_TEMPLATE = """You are an AI assistant who enjoys helping users learn about research.
|
46 |
+
Answer the USER_QUERY on additive manufacturing research using the RESEARCH_EXCERPTS.
|
47 |
+
Provide a concise ANSWER based on these excerpts. Avoid listing references.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
===== RESEARCH_EXCERPTS =====
|
50 |
+
{research_excerpts}
|
51 |
|
52 |
+
===== USER_QUERY =====
|
53 |
+
{query}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
===== ANSWER =====
|
56 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Load vectorstore of SFF publications
|
59 |
+
publication_vectorstore = langchain_community.vectorstores.FAISS.load_local(
|
60 |
+
folder_path="publication_vectorstore",
|
61 |
+
embeddings=langchain_huggingface.HuggingFaceEmbeddings(
|
62 |
+
model_name="all-MiniLM-L12-v2",
|
63 |
+
model_kwargs={"device": "cuda"},
|
64 |
+
encode_kwargs={"normalize_embeddings": False},
|
65 |
+
),
|
66 |
+
allow_dangerous_deserialization=True,
|
67 |
+
)
|
68 |
|
69 |
+
# Create the callable LLM
|
70 |
+
llm = transformers.pipeline(
|
71 |
+
"text-generation", model="Qwen/Qwen2.5-7B-Instruct", device="cuda"
|
72 |
+
)
|
73 |
|
74 |
|
75 |
+
def preprocess(query: str) -> str:
|
76 |
"""
|
77 |
Generates a prompt based on the top k documents matching the query.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
query (str): The user's query.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: The formatted prompt containing research excerpts and the user's query.
|
84 |
"""
|
|
|
|
|
85 |
|
86 |
+
# Search for the top k documents matching the query
|
87 |
+
documents = publication_vectorstore.search(
|
88 |
+
query, k=PUBLICATIONS_TO_RETRIEVE, search_type="similarity"
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
|
91 |
+
# Extract the page content from the documents
|
92 |
+
research_excerpts = [f'"... {doc.page_content}..."' for doc in documents]
|
93 |
+
|
94 |
+
# Format the prompt with the research excerpts and the user's query
|
95 |
+
prompt = RAG_TEMPLATE.format(
|
96 |
research_excerpts="\n\n".join(research_excerpts), query=query
|
97 |
)
|
98 |
|
99 |
+
# Print the prompt for debugging purposes
|
100 |
+
print(prompt)
|
101 |
+
|
102 |
return prompt
|
103 |
|
104 |
|
|
|
106 |
def reply(message: str, history: list[str]) -> str:
|
107 |
"""
|
108 |
Generates a response to the user’s message.
|
|
|
|
|
109 |
|
110 |
+
Args:
|
111 |
+
message (str): The user's message or query.
|
112 |
+
history (list[str]): The conversation history.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
str: The generated response from the language model.
|
116 |
+
"""
|
117 |
|
118 |
+
return llm(
|
119 |
+
preprocess(message),
|
120 |
+
max_new_tokens=512,
|
121 |
+
return_full_text=False,
|
122 |
+
)[
|
123 |
+
0
|
124 |
+
]["generated_text"]
|
125 |
|
126 |
|
127 |
# Example Queries for Interface
|