Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio # Interface handling
|
2 |
-
import spaces #
|
3 |
import langchain_community.vectorstores # Vectorstore for publications
|
4 |
import langchain_huggingface # Embeddings
|
5 |
-
import transformers
|
6 |
|
7 |
# The number of publications to retrieve for the prompt
|
8 |
PUBLICATIONS_TO_RETRIEVE = 5
|
@@ -11,13 +11,10 @@ PUBLICATIONS_TO_RETRIEVE = 5
|
|
11 |
RAG_TEMPLATE = """You are an AI assistant who enjoys helping users learn about research.
|
12 |
Answer the USER_QUERY on additive manufacturing research using the RESEARCH_EXCERPTS.
|
13 |
Provide a concise ANSWER based on these excerpts. Avoid listing references.
|
14 |
-
|
15 |
===== RESEARCH_EXCERPTS =====
|
16 |
{research_excerpts}
|
17 |
-
|
18 |
===== USER_QUERY =====
|
19 |
{query}
|
20 |
-
|
21 |
===== ANSWER =====
|
22 |
"""
|
23 |
|
@@ -31,22 +28,23 @@ publication_vectorstore = langchain_community.vectorstores.FAISS.load_local(
|
|
31 |
),
|
32 |
allow_dangerous_deserialization=True,
|
33 |
)
|
34 |
-
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
def preprocess(query: str) -> str:
|
44 |
"""
|
45 |
Generates a prompt based on the top k documents matching the query.
|
46 |
-
|
47 |
Args:
|
48 |
query (str): The user's query.
|
49 |
-
|
50 |
Returns:
|
51 |
str: The formatted prompt containing research excerpts and the user's query.
|
52 |
"""
|
@@ -67,47 +65,29 @@ def preprocess(query: str) -> str:
|
|
67 |
return prompt
|
68 |
|
69 |
|
70 |
-
import threading
|
71 |
-
|
72 |
-
|
73 |
@spaces.GPU
|
74 |
def reply(message: str, history: list[str]) -> str:
|
75 |
"""
|
76 |
Generates a response to the user’s message.
|
77 |
-
|
78 |
Args:
|
79 |
message (str): The user's message or query.
|
80 |
history (list[str]): The conversation history.
|
81 |
-
|
82 |
Returns:
|
83 |
str: The generated response from the language model.
|
84 |
"""
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
"Qwen/Qwen2.5-7B-Instruct-AWQ"
|
89 |
-
)
|
90 |
-
inputs = tok([preprocess(message)], return_tensors="pt")
|
91 |
-
streamer = transformers.TextIteratorStreamer(tok)
|
92 |
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
generated_text
|
99 |
-
for new_text in streamer:
|
100 |
-
generated_text += new_text
|
101 |
-
yield generated_text
|
102 |
-
|
103 |
-
# yield llm(
|
104 |
-
# preprocess(message),
|
105 |
-
# max_new_tokens=512,
|
106 |
-
# return_full_text=False,
|
107 |
-
# streamer=transformers.TextIteratorStreamer(
|
108 |
-
# transformers.AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-AWQ")
|
109 |
-
# ),
|
110 |
-
# )[0]["generated_text"]
|
111 |
|
112 |
|
113 |
# Example Queries for Interface
|
|
|
1 |
import gradio # Interface handling
|
2 |
+
import spaces # GPU
|
3 |
import langchain_community.vectorstores # Vectorstore for publications
|
4 |
import langchain_huggingface # Embeddings
|
5 |
+
import transformers # LLM
|
6 |
|
7 |
# The number of publications to retrieve for the prompt
|
8 |
PUBLICATIONS_TO_RETRIEVE = 5
|
|
|
11 |
RAG_TEMPLATE = """You are an AI assistant who enjoys helping users learn about research.
|
12 |
Answer the USER_QUERY on additive manufacturing research using the RESEARCH_EXCERPTS.
|
13 |
Provide a concise ANSWER based on these excerpts. Avoid listing references.
|
|
|
14 |
===== RESEARCH_EXCERPTS =====
|
15 |
{research_excerpts}
|
|
|
16 |
===== USER_QUERY =====
|
17 |
{query}
|
|
|
18 |
===== ANSWER =====
|
19 |
"""
|
20 |
|
|
|
28 |
),
|
29 |
allow_dangerous_deserialization=True,
|
30 |
)
|
31 |
+
|
32 |
+
# Create the callable LLM
|
33 |
+
llm = transformers.pipeline(
|
34 |
+
task="text-generation",
|
35 |
+
model="Qwen/Qwen2.5-7B-Instruct-AWQ",
|
36 |
+
device="cuda",
|
37 |
+
streamer=transformers.TextStreamer(
|
38 |
+
transformers.AutoTokenizer.from_pretrained("Qwen/Qwen2.5-7B-Instruct-AWQ")
|
39 |
+
),
|
40 |
+
)
|
41 |
|
42 |
|
43 |
def preprocess(query: str) -> str:
|
44 |
"""
|
45 |
Generates a prompt based on the top k documents matching the query.
|
|
|
46 |
Args:
|
47 |
query (str): The user's query.
|
|
|
48 |
Returns:
|
49 |
str: The formatted prompt containing research excerpts and the user's query.
|
50 |
"""
|
|
|
65 |
return prompt
|
66 |
|
67 |
|
|
|
|
|
|
|
68 |
@spaces.GPU
|
69 |
def reply(message: str, history: list[str]) -> str:
|
70 |
"""
|
71 |
Generates a response to the user’s message.
|
|
|
72 |
Args:
|
73 |
message (str): The user's message or query.
|
74 |
history (list[str]): The conversation history.
|
|
|
75 |
Returns:
|
76 |
str: The generated response from the language model.
|
77 |
"""
|
78 |
|
79 |
+
# Preprocess the user's message
|
80 |
+
rag_prompt = preprocess(message)
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Generate a response from the language model
|
83 |
+
response = llm(
|
84 |
+
rag_prompt,
|
85 |
+
max_new_tokens=512,
|
86 |
+
return_full_text=False,
|
87 |
)
|
88 |
+
|
89 |
+
# Return the generated response
|
90 |
+
return response[0]["generated_text"].strip("= ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
# Example Queries for Interface
|