File size: 4,880 Bytes
dcfb67c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import torch
import random
import shutil
import librosa
import warnings
import numpy as np
import gradio as gr
import librosa.display
import matplotlib.pyplot as plt
from utils import get_modelist, find_audio_files, embed_img, TEMP_DIR
from model import EvalNet


TRANSLATE = {
    "Gong": "宫",
    "Shang": "商",
    "Jue": "角",
    "Zhi": "徵",
    "Yu": "羽",
}
CLASSES = list(TRANSLATE.keys())
SAMPLE_RATE = 44100


def zero_padding(y: np.ndarray, end: int):
    size = len(y)
    if size < end:
        return np.concatenate((y, np.zeros(end - size)))

    elif size > end:
        return y[-end:]

    return y


def audio2mel(audio_path: str, seg_len=20):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        y = zero_padding(y, seg_len * sr)
        mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)
        log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
        librosa.display.specshow(log_mel_spec)
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/output.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def audio2cqt(audio_path: str, seg_len=20):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        y = zero_padding(y, seg_len * sr)
        cqt_spec = librosa.cqt(y=y, sr=sr)
        log_cqt_spec = librosa.power_to_db(np.abs(cqt_spec) ** 2, ref=np.max)
        librosa.display.specshow(log_cqt_spec)
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/output.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def audio2chroma(audio_path: str, seg_len=20):
    os.makedirs(TEMP_DIR, exist_ok=True)
    try:
        y, sr = librosa.load(audio_path, sr=SAMPLE_RATE)
        y = zero_padding(y, seg_len * sr)
        chroma_spec = librosa.feature.chroma_stft(y=y, sr=sr)
        log_chroma_spec = librosa.power_to_db(np.abs(chroma_spec) ** 2, ref=np.max)
        librosa.display.specshow(log_chroma_spec)
        plt.axis("off")
        plt.savefig(
            f"{TEMP_DIR}/output.jpg",
            bbox_inches="tight",
            pad_inches=0.0,
        )
        plt.close()

    except Exception as e:
        print(f"Error converting {audio_path} : {e}")


def infer(wav_path: str, log_name: str, folder_path=TEMP_DIR):
    if os.path.exists(folder_path):
        shutil.rmtree(folder_path)

    if not wav_path:
        return None, "请输入音频 Please input an audio!"

    try:
        model = EvalNet(log_name, len(TRANSLATE)).model
    except Exception as e:
        return None, f"{e}"

    spec = log_name.split("_")[-3]
    eval("audio2%s" % spec)(wav_path)
    input = embed_img(f"{folder_path}/output.jpg")
    output: torch.Tensor = model(input)
    pred_id = torch.max(output.data, 1)[1]
    return (
        os.path.basename(wav_path),
        f"{TRANSLATE[CLASSES[pred_id]]} ({CLASSES[pred_id].capitalize()})",
    )


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    models = get_modelist()
    examples = []
    example_audios = find_audio_files()
    model_num = len(models)
    for audio in example_audios:
        examples.append([audio, models[random.randint(0, model_num - 1)]])

    with gr.Blocks() as demo:
        gr.Interface(
            fn=infer,
            inputs=[
                gr.Audio(label="上传录音 Upload a recording", type="filepath"),
                gr.Dropdown(
                    choices=models, label="选择模型 Select a model", value=models[0]
                ),
            ],
            outputs=[
                gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
                gr.Textbox(
                    label="中国五声调式识别 Chinese pentatonic mode recognition",
                    show_copy_button=True,
                ),
            ],
            examples=examples,
            cache_examples=False,
            flagging_mode="never",
            title="建议录音时长保持在 20s 左右<br>It is recommended to keep the recording length around 20s.",
        )

        gr.Markdown(
            """
# 引用 Cite
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
```"""
        )

    demo.launch()