import os import torch import torchvision.transforms as transforms from huggingface_hub import snapshot_download from PIL import Image MODEL_DIR = snapshot_download("ccmusic-database/CTIS", cache_dir="./__pycache__") def toCUDA(x): if hasattr(x, "cuda"): if torch.cuda.is_available(): return x.cuda() return x def find_files(folder_path=f"{MODEL_DIR}/examples", ext=".wav"): wav_files = [] for root, _, files in os.walk(folder_path): for file in files: if file.endswith(ext): file_path = os.path.join(root, file) wav_files.append(file_path) return wav_files def get_modelist(model_dir=MODEL_DIR, assign_model=""): try: entries = os.listdir(model_dir) except OSError as e: print(f"Cannot access {model_dir}: {e}") return output = [] for entry in entries: full_path = os.path.join(model_dir, entry) if entry == ".git" or entry == "examples": print(f"Skip .git / examples dir: {full_path}") continue if os.path.isdir(full_path): model = os.path.basename(full_path) if assign_model and assign_model.lower() in model: output.insert(0, model) else: output.append(model) return output def embed_img(img_path: str, input_size=224): transform = transforms.Compose( [ transforms.Resize([input_size, input_size]), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] ) img = Image.open(img_path).convert("RGB") return transform(img).unsqueeze(0)