Spaces:
Running
Running
import os | |
import torch | |
import torchvision.transforms as transforms | |
from modelscope import snapshot_download | |
from PIL import Image | |
MODEL_DIR = snapshot_download( | |
"ccmusic-database/erhu_playing_tech", | |
cache_dir="./__pycache__", | |
) | |
def toCUDA(x): | |
if hasattr(x, "cuda"): | |
if torch.cuda.is_available(): | |
return x.cuda() | |
return x | |
def find_wav_files(folder_path=f"{MODEL_DIR}/examples"): | |
wav_files = [] | |
for root, _, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(".wav"): | |
file_path = os.path.join(root, file) | |
wav_files.append(file_path) | |
return wav_files | |
def get_modelist(model_dir=MODEL_DIR, assign_model=""): | |
try: | |
entries = os.listdir(model_dir) | |
except OSError as e: | |
print(f"Cannot access {model_dir}: {e}") | |
return | |
output = [] | |
for entry in entries: | |
full_path = os.path.join(model_dir, entry) | |
if entry == ".git" or entry == "examples": | |
print(f"Skip .git / examples dir: {full_path}") | |
continue | |
if os.path.isdir(full_path): | |
model = os.path.basename(full_path) | |
if assign_model and assign_model.lower() in model: | |
output.insert(0, model) | |
else: | |
output.append(model) | |
return output | |
def embed_img(img_path: str, input_size=224): | |
transform = transforms.Compose( | |
[ | |
transforms.Resize([input_size, input_size]), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), | |
] | |
) | |
img = Image.open(img_path).convert("RGB") | |
return transform(img).unsqueeze(0) | |