admin commited on
Commit
ef94b92
·
1 Parent(s): 8a43950
Files changed (6) hide show
  1. .gitattributes +10 -11
  2. .gitignore +5 -0
  3. README.md +4 -3
  4. app.py +145 -0
  5. model.py +53 -0
  6. requirements.txt +5 -0
.gitattributes CHANGED
@@ -1,35 +1,34 @@
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
 
4
  *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
  *.onnx filter=lfs diff=lfs merge=lfs -text
17
  *.ot filter=lfs diff=lfs merge=lfs -text
18
  *.parquet filter=lfs diff=lfs merge=lfs -text
19
  *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
  *.pth filter=lfs diff=lfs merge=lfs -text
24
  *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
  *.xz filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
1
  *.7z filter=lfs diff=lfs merge=lfs -text
2
  *.arrow filter=lfs diff=lfs merge=lfs -text
3
  *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
  *.bz2 filter=lfs diff=lfs merge=lfs -text
 
6
  *.ftz filter=lfs diff=lfs merge=lfs -text
7
  *.gz filter=lfs diff=lfs merge=lfs -text
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.model filter=lfs diff=lfs merge=lfs -text
12
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
 
13
  *.onnx filter=lfs diff=lfs merge=lfs -text
14
  *.ot filter=lfs diff=lfs merge=lfs -text
15
  *.parquet filter=lfs diff=lfs merge=lfs -text
16
  *.pb filter=lfs diff=lfs merge=lfs -text
 
 
17
  *.pt filter=lfs diff=lfs merge=lfs -text
18
  *.pth filter=lfs diff=lfs merge=lfs -text
19
  *.rar filter=lfs diff=lfs merge=lfs -text
 
20
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
22
  *.tflite filter=lfs diff=lfs merge=lfs -text
23
  *.tgz filter=lfs diff=lfs merge=lfs -text
 
24
  *.xz filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *.tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.db* filter=lfs diff=lfs merge=lfs -text
29
+ *.ark* filter=lfs diff=lfs merge=lfs -text
30
+ **/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
31
+ **/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
32
+ **/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
33
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
34
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ *.pt
2
+ __pycache__/*
3
+ tmp/*
4
+ flagged/*
5
+ rename.sh
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
  title: Pianos
3
- emoji: 🌖
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
7
- sdk_version: 4.12.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
1
  ---
2
  title: Pianos
3
+ emoji: 🎹
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.36.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
11
  ---
12
 
13
+ # Cite
14
+ [1] <a href="https://arxiv.org/pdf/2310.04722.pdf">Monan Zhou, Shangda Wu, Shaohua Ji, Zijin Li, and Wei Li. A Holistic Evaluation of Piano Sound Quality[C]//Proceedings of the 10th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2023.</a>
app.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import shutil
4
+ import librosa
5
+ import warnings
6
+ import numpy as np
7
+ import gradio as gr
8
+ import librosa.display
9
+ import matplotlib.pyplot as plt
10
+ import torchvision.transforms as transforms
11
+ from collections import Counter
12
+ from PIL import Image
13
+ from tqdm import tqdm
14
+ from model import net, MODEL_DIR
15
+
16
+
17
+ MODEL = net()
18
+
19
+
20
+ def most_common_element(input_list):
21
+ counter = Counter(input_list)
22
+ mce, _ = counter.most_common(1)[0]
23
+ return mce
24
+
25
+
26
+ def wav_to_mel(audio_path: str, width=0.18):
27
+ os.makedirs("./tmp")
28
+ try:
29
+ y, sr = librosa.load(audio_path, sr=48000)
30
+ non_silent = y
31
+ mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
32
+ log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
33
+ dur = librosa.get_duration(y=non_silent, sr=sr)
34
+ total_frames = log_mel_spec.shape[1]
35
+ step = int(width * total_frames / dur)
36
+ count = int(total_frames / step)
37
+ begin = int(0.5 * (total_frames - count * step))
38
+ end = begin + step * count
39
+ for i in tqdm(range(begin, end, step), desc="Converting wav to jpgs..."):
40
+ librosa.display.specshow(log_mel_spec[:, i : i + step])
41
+ plt.axis("off")
42
+ plt.savefig(
43
+ f"./tmp/{os.path.basename(audio_path)[:-4]}_{i}.jpg",
44
+ bbox_inches="tight",
45
+ pad_inches=0.0,
46
+ )
47
+ plt.close()
48
+
49
+ except Exception as e:
50
+ print(f"Error converting {audio_path} : {e}")
51
+
52
+
53
+ def embed_img(img_path, input_size=224):
54
+ transform = transforms.Compose(
55
+ [
56
+ transforms.Resize([input_size, input_size]),
57
+ transforms.ToTensor(),
58
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
59
+ ]
60
+ )
61
+ img = Image.open(img_path).convert("RGB")
62
+ return transform(img).unsqueeze(0)
63
+
64
+
65
+ def inference(wav_path, folder_path="./tmp"):
66
+ if os.path.exists(folder_path):
67
+ shutil.rmtree(folder_path)
68
+
69
+ if not wav_path:
70
+ return None, "请输入音频 Please input an audio!"
71
+
72
+ wav_to_mel(wav_path)
73
+ outputs = []
74
+ all_files = os.listdir(folder_path)
75
+ for file_name in all_files:
76
+ if file_name.lower().endswith(".jpg"):
77
+ file_path = os.path.join(folder_path, file_name)
78
+ input = embed_img(file_path)
79
+ output: torch.Tensor = MODEL(input)
80
+ pred_id = torch.max(output.data, 1)[1]
81
+ outputs.append(pred_id)
82
+
83
+ max_count_item = most_common_element(outputs)
84
+ shutil.rmtree(folder_path)
85
+ return os.path.basename(wav_path), translate[classes[max_count_item]]
86
+
87
+
88
+ if __name__ == "__main__":
89
+ warnings.filterwarnings("ignore")
90
+ translate = {
91
+ "PearlRiver": "Pearl River",
92
+ "YoungChang": "YOUNG CHANG",
93
+ "Steinway-T": "STEINWAY Theater",
94
+ "Hsinghai": "HSINGHAI",
95
+ "Kawai": "KAWAI",
96
+ "Steinway": "STEINWAY",
97
+ "Kawai-G": "KAWAI Grand",
98
+ "Yamaha": "YAMAHA",
99
+ }
100
+ classes = list(translate.keys())
101
+ example_wavs = []
102
+ for cls in classes:
103
+ example_wavs.append(f"{MODEL_DIR}/examples/{cls}.wav")
104
+
105
+ with gr.Blocks() as demo:
106
+ gr.Interface(
107
+ fn=inference,
108
+ inputs=gr.Audio(
109
+ type="filepath", label="上传钢琴录音 Upload a piano recording"
110
+ ),
111
+ outputs=[
112
+ gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
113
+ gr.Textbox(
114
+ label="钢琴分类结果 Piano classification result",
115
+ show_copy_button=True,
116
+ ),
117
+ ],
118
+ examples=example_wavs,
119
+ cache_examples=False,
120
+ allow_flagging="never",
121
+ title="建议录音时长保持在 3s 左右, 过长会影响识别效率<br>It is recommended to keep the duration of recording around 3s, too long will affect the recognition efficiency.",
122
+ )
123
+
124
+ gr.Markdown(
125
+ """
126
+ # 引用 Cite
127
+ ```bibtex
128
+ @inproceedings{DBLP:journals/corr/abs-2310-04722,
129
+ author = {Monan Zhou and
130
+ Shangda Wu and
131
+ Shaohua Ji and
132
+ Zijin Li and
133
+ Wei Li},
134
+ title = {A Holistic Evaluation of Piano Sound Quality},
135
+ booktitle = {Proceedings of the 10th Conference on Sound and Music Technology (CSMT)},
136
+ year = {2023},
137
+ publisher = {Springer Singapore},
138
+ address = {Singapore},
139
+ timestamp = {Fri, 20 Oct 2023 12:04:38 +0200},
140
+ bibsource = {dblp computer science bibliography, https://dblp.org}
141
+ }
142
+ ```"""
143
+ )
144
+
145
+ demo.launch()
model.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from modelscope import snapshot_download
4
+ from torchvision.models import squeezenet1_1
5
+
6
+ MODEL_DIR = snapshot_download(
7
+ "ccmusic-database/pianos",
8
+ cache_dir="./__pycache__",
9
+ )
10
+
11
+
12
+ def Classifier(cls_num=8, output_size=512, linear_output=False):
13
+ q = (1.0 * output_size / cls_num) ** 0.25
14
+ l1 = int(q * cls_num)
15
+ l2 = int(q * l1)
16
+ l3 = int(q * l2)
17
+
18
+ if linear_output:
19
+ return torch.nn.Sequential(
20
+ nn.Dropout(),
21
+ nn.Linear(output_size, l3),
22
+ nn.ReLU(inplace=True),
23
+ nn.Dropout(),
24
+ nn.Linear(l3, l2),
25
+ nn.ReLU(inplace=True),
26
+ nn.Dropout(),
27
+ nn.Linear(l2, l1),
28
+ nn.ReLU(inplace=True),
29
+ nn.Linear(l1, cls_num),
30
+ )
31
+
32
+ else:
33
+ return torch.nn.Sequential(
34
+ nn.Dropout(),
35
+ nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)),
36
+ nn.ReLU(inplace=True),
37
+ nn.AdaptiveAvgPool2d(output_size=(1, 1)),
38
+ nn.Flatten(),
39
+ nn.Linear(l3, l2),
40
+ nn.ReLU(inplace=True),
41
+ nn.Dropout(),
42
+ nn.Linear(l2, l1),
43
+ nn.ReLU(inplace=True),
44
+ nn.Linear(l1, cls_num),
45
+ )
46
+
47
+
48
+ def net(weights=MODEL_DIR + "/save.pt"):
49
+ model = squeezenet1_1(pretrained=False)
50
+ model.classifier = Classifier()
51
+ model.load_state_dict(torch.load(weights, map_location=torch.device("cpu")))
52
+ model.eval()
53
+ return model
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ librosa
2
+ torch
3
+ matplotlib
4
+ torchvision
5
+ pillow