Spaces:
Running
Running
admin
commited on
Commit
·
ef94b92
1
Parent(s):
8a43950
sync
Browse files- .gitattributes +10 -11
- .gitignore +5 -0
- README.md +4 -3
- app.py +145 -0
- model.py +53 -0
- requirements.txt +5 -0
.gitattributes
CHANGED
@@ -1,35 +1,34 @@
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
4 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
|
|
6 |
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
|
|
11 |
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
13 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
17 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
*.rar filter=lfs diff=lfs merge=lfs -text
|
|
|
20 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
22 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
|
|
24 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.db* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.ark* filter=lfs diff=lfs merge=lfs -text
|
30 |
+
**/*ckpt*data* filter=lfs diff=lfs merge=lfs -text
|
31 |
+
**/*ckpt*.meta filter=lfs diff=lfs merge=lfs -text
|
32 |
+
**/*ckpt*.index filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pt
|
2 |
+
__pycache__/*
|
3 |
+
tmp/*
|
4 |
+
flagged/*
|
5 |
+
rename.sh
|
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
title: Pianos
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
1 |
---
|
2 |
title: Pianos
|
3 |
+
emoji: 🎹
|
4 |
colorFrom: purple
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
# Cite
|
14 |
+
[1] <a href="https://arxiv.org/pdf/2310.04722.pdf">Monan Zhou, Shangda Wu, Shaohua Ji, Zijin Li, and Wei Li. A Holistic Evaluation of Piano Sound Quality[C]//Proceedings of the 10th Conference on Sound and Music Technology (CSMT). Springer, Singapore, 2023.</a>
|
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import shutil
|
4 |
+
import librosa
|
5 |
+
import warnings
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
import librosa.display
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import torchvision.transforms as transforms
|
11 |
+
from collections import Counter
|
12 |
+
from PIL import Image
|
13 |
+
from tqdm import tqdm
|
14 |
+
from model import net, MODEL_DIR
|
15 |
+
|
16 |
+
|
17 |
+
MODEL = net()
|
18 |
+
|
19 |
+
|
20 |
+
def most_common_element(input_list):
|
21 |
+
counter = Counter(input_list)
|
22 |
+
mce, _ = counter.most_common(1)[0]
|
23 |
+
return mce
|
24 |
+
|
25 |
+
|
26 |
+
def wav_to_mel(audio_path: str, width=0.18):
|
27 |
+
os.makedirs("./tmp")
|
28 |
+
try:
|
29 |
+
y, sr = librosa.load(audio_path, sr=48000)
|
30 |
+
non_silent = y
|
31 |
+
mel_spec = librosa.feature.melspectrogram(y=non_silent, sr=sr)
|
32 |
+
log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max)
|
33 |
+
dur = librosa.get_duration(y=non_silent, sr=sr)
|
34 |
+
total_frames = log_mel_spec.shape[1]
|
35 |
+
step = int(width * total_frames / dur)
|
36 |
+
count = int(total_frames / step)
|
37 |
+
begin = int(0.5 * (total_frames - count * step))
|
38 |
+
end = begin + step * count
|
39 |
+
for i in tqdm(range(begin, end, step), desc="Converting wav to jpgs..."):
|
40 |
+
librosa.display.specshow(log_mel_spec[:, i : i + step])
|
41 |
+
plt.axis("off")
|
42 |
+
plt.savefig(
|
43 |
+
f"./tmp/{os.path.basename(audio_path)[:-4]}_{i}.jpg",
|
44 |
+
bbox_inches="tight",
|
45 |
+
pad_inches=0.0,
|
46 |
+
)
|
47 |
+
plt.close()
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error converting {audio_path} : {e}")
|
51 |
+
|
52 |
+
|
53 |
+
def embed_img(img_path, input_size=224):
|
54 |
+
transform = transforms.Compose(
|
55 |
+
[
|
56 |
+
transforms.Resize([input_size, input_size]),
|
57 |
+
transforms.ToTensor(),
|
58 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
|
59 |
+
]
|
60 |
+
)
|
61 |
+
img = Image.open(img_path).convert("RGB")
|
62 |
+
return transform(img).unsqueeze(0)
|
63 |
+
|
64 |
+
|
65 |
+
def inference(wav_path, folder_path="./tmp"):
|
66 |
+
if os.path.exists(folder_path):
|
67 |
+
shutil.rmtree(folder_path)
|
68 |
+
|
69 |
+
if not wav_path:
|
70 |
+
return None, "请输入音频 Please input an audio!"
|
71 |
+
|
72 |
+
wav_to_mel(wav_path)
|
73 |
+
outputs = []
|
74 |
+
all_files = os.listdir(folder_path)
|
75 |
+
for file_name in all_files:
|
76 |
+
if file_name.lower().endswith(".jpg"):
|
77 |
+
file_path = os.path.join(folder_path, file_name)
|
78 |
+
input = embed_img(file_path)
|
79 |
+
output: torch.Tensor = MODEL(input)
|
80 |
+
pred_id = torch.max(output.data, 1)[1]
|
81 |
+
outputs.append(pred_id)
|
82 |
+
|
83 |
+
max_count_item = most_common_element(outputs)
|
84 |
+
shutil.rmtree(folder_path)
|
85 |
+
return os.path.basename(wav_path), translate[classes[max_count_item]]
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
warnings.filterwarnings("ignore")
|
90 |
+
translate = {
|
91 |
+
"PearlRiver": "Pearl River",
|
92 |
+
"YoungChang": "YOUNG CHANG",
|
93 |
+
"Steinway-T": "STEINWAY Theater",
|
94 |
+
"Hsinghai": "HSINGHAI",
|
95 |
+
"Kawai": "KAWAI",
|
96 |
+
"Steinway": "STEINWAY",
|
97 |
+
"Kawai-G": "KAWAI Grand",
|
98 |
+
"Yamaha": "YAMAHA",
|
99 |
+
}
|
100 |
+
classes = list(translate.keys())
|
101 |
+
example_wavs = []
|
102 |
+
for cls in classes:
|
103 |
+
example_wavs.append(f"{MODEL_DIR}/examples/{cls}.wav")
|
104 |
+
|
105 |
+
with gr.Blocks() as demo:
|
106 |
+
gr.Interface(
|
107 |
+
fn=inference,
|
108 |
+
inputs=gr.Audio(
|
109 |
+
type="filepath", label="上传钢琴录音 Upload a piano recording"
|
110 |
+
),
|
111 |
+
outputs=[
|
112 |
+
gr.Textbox(label="音频文件名 Audio filename", show_copy_button=True),
|
113 |
+
gr.Textbox(
|
114 |
+
label="钢琴分类结果 Piano classification result",
|
115 |
+
show_copy_button=True,
|
116 |
+
),
|
117 |
+
],
|
118 |
+
examples=example_wavs,
|
119 |
+
cache_examples=False,
|
120 |
+
allow_flagging="never",
|
121 |
+
title="建议录音时长保持在 3s 左右, 过长会影响识别效率<br>It is recommended to keep the duration of recording around 3s, too long will affect the recognition efficiency.",
|
122 |
+
)
|
123 |
+
|
124 |
+
gr.Markdown(
|
125 |
+
"""
|
126 |
+
# 引用 Cite
|
127 |
+
```bibtex
|
128 |
+
@inproceedings{DBLP:journals/corr/abs-2310-04722,
|
129 |
+
author = {Monan Zhou and
|
130 |
+
Shangda Wu and
|
131 |
+
Shaohua Ji and
|
132 |
+
Zijin Li and
|
133 |
+
Wei Li},
|
134 |
+
title = {A Holistic Evaluation of Piano Sound Quality},
|
135 |
+
booktitle = {Proceedings of the 10th Conference on Sound and Music Technology (CSMT)},
|
136 |
+
year = {2023},
|
137 |
+
publisher = {Springer Singapore},
|
138 |
+
address = {Singapore},
|
139 |
+
timestamp = {Fri, 20 Oct 2023 12:04:38 +0200},
|
140 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
141 |
+
}
|
142 |
+
```"""
|
143 |
+
)
|
144 |
+
|
145 |
+
demo.launch()
|
model.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from modelscope import snapshot_download
|
4 |
+
from torchvision.models import squeezenet1_1
|
5 |
+
|
6 |
+
MODEL_DIR = snapshot_download(
|
7 |
+
"ccmusic-database/pianos",
|
8 |
+
cache_dir="./__pycache__",
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def Classifier(cls_num=8, output_size=512, linear_output=False):
|
13 |
+
q = (1.0 * output_size / cls_num) ** 0.25
|
14 |
+
l1 = int(q * cls_num)
|
15 |
+
l2 = int(q * l1)
|
16 |
+
l3 = int(q * l2)
|
17 |
+
|
18 |
+
if linear_output:
|
19 |
+
return torch.nn.Sequential(
|
20 |
+
nn.Dropout(),
|
21 |
+
nn.Linear(output_size, l3),
|
22 |
+
nn.ReLU(inplace=True),
|
23 |
+
nn.Dropout(),
|
24 |
+
nn.Linear(l3, l2),
|
25 |
+
nn.ReLU(inplace=True),
|
26 |
+
nn.Dropout(),
|
27 |
+
nn.Linear(l2, l1),
|
28 |
+
nn.ReLU(inplace=True),
|
29 |
+
nn.Linear(l1, cls_num),
|
30 |
+
)
|
31 |
+
|
32 |
+
else:
|
33 |
+
return torch.nn.Sequential(
|
34 |
+
nn.Dropout(),
|
35 |
+
nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)),
|
36 |
+
nn.ReLU(inplace=True),
|
37 |
+
nn.AdaptiveAvgPool2d(output_size=(1, 1)),
|
38 |
+
nn.Flatten(),
|
39 |
+
nn.Linear(l3, l2),
|
40 |
+
nn.ReLU(inplace=True),
|
41 |
+
nn.Dropout(),
|
42 |
+
nn.Linear(l2, l1),
|
43 |
+
nn.ReLU(inplace=True),
|
44 |
+
nn.Linear(l1, cls_num),
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
def net(weights=MODEL_DIR + "/save.pt"):
|
49 |
+
model = squeezenet1_1(pretrained=False)
|
50 |
+
model.classifier = Classifier()
|
51 |
+
model.load_state_dict(torch.load(weights, map_location=torch.device("cpu")))
|
52 |
+
model.eval()
|
53 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
librosa
|
2 |
+
torch
|
3 |
+
matplotlib
|
4 |
+
torchvision
|
5 |
+
pillow
|