import torch import torch.nn as nn from modelscope import snapshot_download from torchvision.models import squeezenet1_1 MODEL_DIR = snapshot_download( "ccmusic-database/pianos", cache_dir="./__pycache__", ) def Classifier(cls_num=8, output_size=512, linear_output=False): q = (1.0 * output_size / cls_num) ** 0.25 l1 = int(q * cls_num) l2 = int(q * l1) l3 = int(q * l2) if linear_output: return torch.nn.Sequential( nn.Dropout(), nn.Linear(output_size, l3), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(l3, l2), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(l2, l1), nn.ReLU(inplace=True), nn.Linear(l1, cls_num), ) else: return torch.nn.Sequential( nn.Dropout(), nn.Conv2d(output_size, l3, kernel_size=(1, 1), stride=(1, 1)), nn.ReLU(inplace=True), nn.AdaptiveAvgPool2d(output_size=(1, 1)), nn.Flatten(), nn.Linear(l3, l2), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(l2, l1), nn.ReLU(inplace=True), nn.Linear(l1, cls_num), ) def net(weights=f"{MODEL_DIR}/save.pt"): model = squeezenet1_1(pretrained=False) model.classifier = Classifier() model.load_state_dict(torch.load(weights, map_location=torch.device("cpu"))) model.eval() return model