Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from tensorflow.keras.applications import ResNet50V2 | |
from tensorflow.keras.models import Sequential, load_model | |
from tensorflow.keras.layers import Dense | |
from tensorflow.keras.utils import to_categorical | |
from tensorflow.keras.applications.resnet_v2 import preprocess_input | |
from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
image_folders = ['King_Crab', 'Wind_Lion_God', 'pavo_cristatus', 'otter', 'Upupa_epops'] | |
labels = ["ι±", "ιιι’¨η ηΊ", "ιιθει", "ζδΊζ°΄ηΊ", "ιιζ΄ει³₯"] | |
base_dir = './' | |
thedir = base_dir + image_folders[0] | |
os.listdir(thedir) | |
data = [] | |
target = [] | |
for i in range(5): | |
thedir = base_dir + image_folders[i] | |
image_fnames = os.listdir(thedir) | |
for theimage in image_fnames: | |
if theimage == ".git" or theimage == ".ipynb_checkpoints": | |
continue | |
img_path = thedir + '/' + theimage | |
img = load_img(img_path , target_size = (256,256)) | |
x = img_to_array(img) | |
data.append(x) | |
target.append(i) | |
model = load_model('my_cnn_model.pb') # Loading the Tensorflow Saved Model (PB) | |
print(model.summary()) | |
def classify_image(inp): | |
inp = inp.reshape((-1, 256, 256, 3)) | |
inp = preprocess_input(inp) | |
prediction = model.predict(inp).flatten() | |
return {labels[i]: float(prediction[i]) for i in range(5)} | |
image = gr.Image(shape=(256, 256), label="ιιθειγζδΊζ°΄ηΊγζ΄ει³₯η §η") | |
label = gr.Label(num_top_classes=5, label="AIθΎ¨θη΅ζ") | |
some_text="ζθ½θΎ¨θιιθειγζδΊζ°΄ηΊγζ΄ει³₯γζΎεΌ΅ιιθειγζδΊζ°΄ηΊγζ΄ει³₯η §ηδΎθζε§!" | |
sample_images = [] | |
for i in range(5): | |
thedir = base_dir + image_folders[i] | |
for file in os.listdir(thedir): | |
if file == ".git" or file == ".ipynb_checkpoints": | |
continue | |
sample_images.append(image_folders[i] + '/' + file) | |
iface = gr.Interface(fn=classify_image, | |
inputs=image, | |
outputs=label, | |
title="AI ιιθειγζδΊζ°΄ηΊγζ΄ει³₯θΎ¨θζ©", | |
description=some_text, | |
examples=sample_images, live=True) | |
# def greet(name): | |
# model = load_model('my_cnn_model.h5') # Loading the Tensorflow Saved Model (PB) | |
# return "Hello " + name + "!!" + model.summary() | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# .launch(share=True) | |
iface.launch() |