cd14 commited on
Commit
5530cee
·
1 Parent(s): d0a8890

adding rayan prompt

Browse files
Files changed (1) hide show
  1. utils.py +8 -7
utils.py CHANGED
@@ -120,11 +120,11 @@ def get_optimized_prediction(modellocation, model_filename, bucket_name, selecte
120
  y_test = import_data("emailcampaigntrainingdata", 'modelCC/ytest.csv')
121
 
122
  # load model from S3
123
- key = modellocation + model_filename
124
- with tempfile.TemporaryFile() as fp:
125
- s3_client.download_fileobj(Fileobj=fp, Bucket=bucket_name, Key=key)
126
- fp.seek(0)
127
- regr = joblib.load(fp)
128
  # print(type(regr))
129
  ########### SAVE MODEL #############
130
  # filename = 'modelCC.sav'
@@ -137,8 +137,9 @@ def get_optimized_prediction(modellocation, model_filename, bucket_name, selecte
137
  # loaded_model = pickle.load(open(filename, 'rb'))
138
  # result = loaded_model.score(X_test, Y_test)
139
  ########################################
140
- y_pred = regr.predict(X_test)
141
- r2_test = r2_score(y_test, y_pred)
 
142
  # print(r2_test)
143
  ## Get recommendation
144
  df_uploaded = pd.DataFrame(columns=['character_cnt', "url_cnt", "industry"])
 
120
  y_test = import_data("emailcampaigntrainingdata", 'modelCC/ytest.csv')
121
 
122
  # load model from S3
123
+ # key = modellocation + model_filename
124
+ # with tempfile.TemporaryFile() as fp:
125
+ # s3_client.download_fileobj(Fileobj=fp, Bucket=bucket_name, Key=key)
126
+ # fp.seek(0)
127
+ # regr = joblib.load(fp)
128
  # print(type(regr))
129
  ########### SAVE MODEL #############
130
  # filename = 'modelCC.sav'
 
137
  # loaded_model = pickle.load(open(filename, 'rb'))
138
  # result = loaded_model.score(X_test, Y_test)
139
  ########################################
140
+ regr = joblib.load('models/models.sav')
141
+ # y_pred = regr.predict(X_test)[0]
142
+ # r2_test = r2_score(y_test, y_pred)
143
  # print(r2_test)
144
  ## Get recommendation
145
  df_uploaded = pd.DataFrame(columns=['character_cnt', "url_cnt", "industry"])