File size: 8,627 Bytes
b3db947
 
 
 
 
 
 
30ac5c2
 
 
 
17c4279
 
30ac5c2
 
 
 
 
 
 
b3db947
 
 
 
 
 
 
 
30ac5c2
b3db947
30ac5c2
b3db947
 
 
 
 
 
 
 
 
 
e2ffaac
 
 
 
17c4279
 
 
 
 
 
 
 
 
 
 
e2ffaac
 
17c4279
 
 
e2ffaac
17c4279
 
 
 
e2ffaac
17c4279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3db947
 
 
 
 
 
 
 
 
17c4279
 
 
 
e2ffaac
17c4279
 
 
 
 
e2ffaac
17c4279
 
 
 
 
 
 
e2ffaac
17c4279
 
 
 
 
 
 
 
 
 
 
 
 
b3db947
17c4279
 
 
 
e2ffaac
17c4279
 
30ac5c2
b3db947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17c4279
b3db947
 
 
17c4279
 
b3db947
 
 
e3d3510
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, TextStreamer
from llama_index.core.prompts.prompts import SimpleInputPrompt
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
#from langchain.embeddings.huggingface import HuggingFaceEmbeddings # This import should now work
from langchain_huggingface import HuggingFaceEmbeddings
from sentence_transformers import SentenceTransformer

from llama_index.core import set_global_service_context, ServiceContext

from llama_index.core import VectorStoreIndex, download_loader, Document # Import Document
from pathlib import Path
import fitz  # PyMuPDF

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEFAULT_SYS_PROMPT = """\
"""

DESCRIPTION = """\
# Test Chat Information System for MEPO 2024 courtesy of Dr. Dancy & THiCC Lab

Duplicated, then modified from [llama-2 7B example](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat)
"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""

SYSTEM_PROMPT = """<s>[INST] <<SYS>>

    <</SYS>>"""

def read_pdf_to_documents(file_path):
    doc = fitz.open(file_path)
    documents = []
    for page_num in range(len(doc)):
        page = doc.load_page(page_num)
        text = page.get_text()
        documents.append(Document(text=text)) # Now Document is defined
    return documents

# Function to update the global system prompt
def update_system_prompt(new_prompt):
    global SYSTEM_PROMPT
    SYSTEM_PROMPT = new_prompt
    query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
    return "System prompt updated."

@spaces.GPU(duration=240)
def query_model(question):
    llm = HuggingFaceLLM(
        context_window=4096,
        max_new_tokens=256,
        system_prompt=SYSTEM_PROMPT,
        query_wrapper_prompt=query_wrapper_prompt,
        model=model,
        tokenizer=tokenizer
    )
    #embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
    service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
    set_global_service_context(service_context)

    response = query_engine.query(question)
    # formatted_response = format_paragraph(response.response)
    return response.response

def format_paragraph(text, line_length=80):
    words = text.split()
    lines = []
    current_line = []
    current_length = 0

    for word in words:
        if current_length + len(word) + 1 > line_length:
            lines.append(' '.join(current_line))
            current_line = [word]
            current_length = len(word) + 1
        else:
            current_line.append(word)
            current_length += len(word) + 1

    if current_line:
        lines.append(' '.join(current_line))

    return '\n'.join(lines)

if not torch.cuda.is_available():
    DESCRIPTION += "We won't be able to run this space! We need GPU processing"


if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False
    # Throw together the query wrapper
    query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
    llm = HuggingFaceLLM(context_window=4096,
                     max_new_tokens=256,
                     system_prompt=SYSTEM_PROMPT,
                     query_wrapper_prompt=query_wrapper_prompt,
                     model=model, tokenizer=tokenizer)
    embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
    service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
    set_global_service_context(service_context)
    file_path = Path("files/Full Pamplet.pdf")
    documents = read_pdf_to_documents(file_path)
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()


update_prompt_interface = gr.Interface(
    fn=update_system_prompt,
    inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=SYSTEM_PROMPT),
    outputs=gr.Textbox(label="Status"),
    title="System Prompt Updater",
    description="Update the system prompt used for context."
)

# Create Gradio interface for querying the model
query_interface = gr.Interface(
    fn=query_model,
    inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
    outputs=gr.Textbox(label="Response"),
    title="Document Query Assistant",
    description="Ask questions based on the content of the loaded pamphlet."
)

# Combine the interfaces
combined_interface = gr.TabbedInterface([update_prompt_interface, query_interface], ["Update System Prompt", "Query Assistant"])

# Launch the combined interface
#combined_interface.launch()

"""
@spaces.GPU(duration=240)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = MAX_MAX_NEW_TOKENS,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Hello there! How are you doing?"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)
"""

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    #chat_interface.render()
    combined_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()