Spaces:
Runtime error
Runtime error
File size: 8,627 Bytes
b3db947 30ac5c2 17c4279 30ac5c2 b3db947 30ac5c2 b3db947 30ac5c2 b3db947 e2ffaac 17c4279 e2ffaac 17c4279 e2ffaac 17c4279 e2ffaac 17c4279 b3db947 17c4279 e2ffaac 17c4279 e2ffaac 17c4279 e2ffaac 17c4279 b3db947 17c4279 e2ffaac 17c4279 30ac5c2 b3db947 17c4279 b3db947 17c4279 b3db947 e3d3510 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, TextStreamer
from llama_index.core.prompts.prompts import SimpleInputPrompt
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.legacy.embeddings.langchain import LangchainEmbedding
#from langchain.embeddings.huggingface import HuggingFaceEmbeddings # This import should now work
from langchain_huggingface import HuggingFaceEmbeddings
from sentence_transformers import SentenceTransformer
from llama_index.core import set_global_service_context, ServiceContext
from llama_index.core import VectorStoreIndex, download_loader, Document # Import Document
from pathlib import Path
import fitz # PyMuPDF
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DEFAULT_SYS_PROMPT = """\
"""
DESCRIPTION = """\
# Test Chat Information System for MEPO 2024 courtesy of Dr. Dancy & THiCC Lab
Duplicated, then modified from [llama-2 7B example](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat)
"""
LICENSE = """
<p/>
---
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
"""
SYSTEM_PROMPT = """<s>[INST] <<SYS>>
<</SYS>>"""
def read_pdf_to_documents(file_path):
doc = fitz.open(file_path)
documents = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text()
documents.append(Document(text=text)) # Now Document is defined
return documents
# Function to update the global system prompt
def update_system_prompt(new_prompt):
global SYSTEM_PROMPT
SYSTEM_PROMPT = new_prompt
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
return "System prompt updated."
@spaces.GPU(duration=240)
def query_model(question):
llm = HuggingFaceLLM(
context_window=4096,
max_new_tokens=256,
system_prompt=SYSTEM_PROMPT,
query_wrapper_prompt=query_wrapper_prompt,
model=model,
tokenizer=tokenizer
)
#embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
set_global_service_context(service_context)
response = query_engine.query(question)
# formatted_response = format_paragraph(response.response)
return response.response
def format_paragraph(text, line_length=80):
words = text.split()
lines = []
current_line = []
current_length = 0
for word in words:
if current_length + len(word) + 1 > line_length:
lines.append(' '.join(current_line))
current_line = [word]
current_length = len(word) + 1
else:
current_line.append(word)
current_length += len(word) + 1
if current_line:
lines.append(' '.join(current_line))
return '\n'.join(lines)
if not torch.cuda.is_available():
DESCRIPTION += "We won't be able to run this space! We need GPU processing"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# Throw together the query wrapper
query_wrapper_prompt = SimpleInputPrompt("{query_str} [/INST]")
llm = HuggingFaceLLM(context_window=4096,
max_new_tokens=256,
system_prompt=SYSTEM_PROMPT,
query_wrapper_prompt=query_wrapper_prompt,
model=model, tokenizer=tokenizer)
embeddings = LangchainEmbedding(HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2"))
service_context = ServiceContext.from_defaults(chunk_size=1024, llm=llm, embed_model=embeddings)
set_global_service_context(service_context)
file_path = Path("files/Full Pamplet.pdf")
documents = read_pdf_to_documents(file_path)
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
update_prompt_interface = gr.Interface(
fn=update_system_prompt,
inputs=gr.Textbox(lines=5, placeholder="Enter the system prompt here...", label="System Prompt", value=SYSTEM_PROMPT),
outputs=gr.Textbox(label="Status"),
title="System Prompt Updater",
description="Update the system prompt used for context."
)
# Create Gradio interface for querying the model
query_interface = gr.Interface(
fn=query_model,
inputs=gr.Textbox(lines=2, placeholder="Enter your question here...", label="User Question"),
outputs=gr.Textbox(label="Response"),
title="Document Query Assistant",
description="Ask questions based on the content of the loaded pamphlet."
)
# Combine the interfaces
combined_interface = gr.TabbedInterface([update_prompt_interface, query_interface], ["Update System Prompt", "Query Assistant"])
# Launch the combined interface
#combined_interface.launch()
"""
@spaces.GPU(duration=240)
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = MAX_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
"""
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
#chat_interface.render()
combined_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|