resume_api_2 / app.py
cdcvd's picture
Update app.py
78c2eb5 verified
import pandas as pd
import tempfile
import json
import gradio as gr
from resume_extractor import ResumeExtractor
from job_description_extractor import JobDescriptionExtractor
from model_trainer import ModelTrainer
from comparison_utils import (
compare_with_chatgpt_job_title,
compare_with_chatgpt_education,
compare_with_chatgpt_location,
compare_age_range_with_description
)
from synthetic_data import create_synthetic_data
def main(resume_text, job_description):
openai_api_key = 'sk-proj-bC6H6QrP6DUqHkn5vOkYT3BlbkFJsSyvL4Bc9c3UEbHrsPMj'
ner_model_name_or_path = "NLPclass/Named-entity-recognition"
skill_model_name_or_path = "GalalEwida/lm-ner-skills-recognition"
resume_extractor = ResumeExtractor(ner_model_name_or_path, openai_api_key)
job_description_extractor = JobDescriptionExtractor(openai_api_key)
full_name, loc, age, skills, education_resume, title_job_resume = resume_extractor.extract_resume_info(resume_text, skill_model_name_or_path)
job_skills, education_job, title_job, location, age_DS = job_description_extractor.extract_job_info(job_description, skill_model_name_or_path)
education_match = compare_with_chatgpt_education(education_resume, education_job, openai_api_key)
title_job_match = compare_with_chatgpt_job_title(title_job_resume, title_job, openai_api_key)
title_loc_match = compare_with_chatgpt_location(loc, location, openai_api_key)
title_age_match = compare_age_range_with_description(age, age_DS, openai_api_key)
synthetic_data = create_synthetic_data(job_skills, education_job, title_job, location, age_DS)
synthetic_data.to_csv('synthetic_data.csv')
model_trainer = ModelTrainer(synthetic_data)
best_model = model_trainer.train_models()
input_data = {skill: 1 if skill in skills else 0 for skill in job_skills}
input_data[education_job] = education_match
input_data[title_job] = title_job_match
input_data[location] = title_loc_match
input_data[age_DS] = title_age_match
input_df = pd.DataFrame([input_data])
input_df.to_csv('input_df.csv')
predicted_target = best_model.predict(input_df)
return {
"full_name": full_name,
"location": loc,
"age": age,
"age_DS": age_DS,
"skills": skills,
"education_resume": education_resume,
"title_job_resume": title_job_resume,
"job_skills": job_skills,
"education_job": education_job,
"title_job": title_job,
"location_job": location,
"predicted_target": predicted_target[0]
}
def process_text(resume_text, job_description_text):
try:
output = main(resume_text, job_description_text)
# ذخیره خروجی JSON در یک فایل موقت
with tempfile.NamedTemporaryFile(delete=False, suffix=".json", mode='w', encoding='utf-8') as tmp_file:
json.dump(output, tmp_file, ensure_ascii=False, indent=4)
return tmp_file.name
except Exception as e:
# ایجاد یک فایل متنی موقت برای پیام خطا
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as tmp_file:
tmp_file.write(f"Error: {str(e)}")
return tmp_file.name
iface = gr.Interface(
fn=process_text,
inputs=[gr.Textbox(lines=10, placeholder="لطفاً رزومه خود را وارد کنید..."),
gr.Textbox(lines=10, placeholder="لطفاً توضیحات شغلی را وارد کنید...")],
outputs=gr.File(label="دانلود فایل JSON"),
title="پردازش رزومه و توضیحات شغلی",
description="این ابزار رزومه و توضیحات شغلی شما را پردازش کرده و امتیازات مشابهت را محاسبه می‌کند."
)
if __name__ == "__main__":
iface.launch()