Spaces:
Sleeping
Sleeping
import openai | |
import openai | |
import re | |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline | |
import torch | |
class JobDescriptionExtractor: | |
def __init__(self, openai_api_key): | |
openai.api_key = openai_api_key | |
def extract_skills(self, text, skill_model_name_or_path): | |
skill_tokenizer = AutoTokenizer.from_pretrained(skill_model_name_or_path) | |
skill_model = AutoModelForTokenClassification.from_pretrained(skill_model_name_or_path) | |
inputs = skill_tokenizer(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = skill_model(**inputs) | |
logits = outputs.logits | |
predictions = torch.argmax(logits, dim=2) | |
tokens = skill_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) | |
tags = [skill_model.config.id2label[p.item()] for p in predictions[0]] | |
skills = [] | |
temp_skill = "" | |
for token, tag in zip(tokens, tags): | |
if tag == "B-TECHNOLOGY": | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
temp_skill = "" | |
skills.append(token) | |
elif tag == "B-TECHNICAL": | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
temp_skill = "" | |
temp_skill = token | |
elif tag == "I-TECHNICAL": | |
temp_skill += token.replace('##', '') | |
if temp_skill: | |
skills.append(temp_skill.strip()) | |
return list(set(skills)) | |
def translate_text(self, text, target_language="en"): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that translates text."}, | |
{"role": "user", "content": f"Translate the following text to {target_language}:\n\n{text}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_location(self, job_description): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract location from the following job description:\n\n{job_description}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def title(self, text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract the [Last Job Title] from the following text:\n\n{text}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_education(self, text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract the [Highest Education Degree] from the following text:\n\n{text}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
def extract_age_range(self, text): | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that extracts information from text."}, | |
{"role": "user", "content": f"Extract the age range from the following text:\n\n{text}"} | |
], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"].strip() | |
pass | |
def extract_job_info(self, job_description, skill_model_name_or_path): | |
# تابع استخراج اطلاعات کلی از توصیف شغلی | |
translated_job_description = self.translate_text(job_description) | |
job_skills = self.extract_skills(translated_job_description, skill_model_name_or_path) | |
education_job = self.extract_education(translated_job_description) | |
title_job = self.title(translated_job_description) | |
location = self.extract_location(translated_job_description) | |
age_DS = self.extract_age_range(translated_job_description) | |
return job_skills, education_job, title_job, location, age_DS |