Spaces:
Runtime error
Runtime error
File size: 4,798 Bytes
d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 d3c95ed 9555522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import json
import os
import zipfile
from pathlib import Path
import io
from tempfile import NamedTemporaryFile
from PIL import Image
import gradio as gr
import torch
from torchvision.transforms import transforms
from torch.utils.data import Dataset, DataLoader
import spaces
torch.jit.script = lambda f: f
# torch.cuda.amp.autocast(enabled=True)
caption_ext = ".txt"
exclude_tags = ("explicit", "questionable", "safe")
transform = transforms.Compose([
transforms.Resize((384, 384)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
class ZipImageDataset(Dataset):
def __init__(self, zip_file, dtype):
self.zip_file = zip_file
self.dtype = dtype
self.image_files = [file_info for file_info in zip_file.infolist() if file_info.filename.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]
def __len__(self):
return len(self.image_files)
def __getitem__(self, index):
file_info = self.image_files[index]
with self.zip_file.open(file_info) as file:
image = Image.open(file).convert("RGB")
image = transform(image).to(self.dtype)
return {
"image": image,
"image_name": file_info.filename,
}
model = torch.load("./model.pth", map_location=torch.device('cpu'))
model.eval()
with open("tags_9940.json", "r") as file:
tags = json.load(file)
allowed_tags = sorted(tags) + ["explicit", "questionable", "safe"]
@spaces.GPU(duration=5)
def create_tags(image, threshold):
img = image.convert('RGB')
tensor = transform(img).unsqueeze(0)
with torch.no_grad():
logits = model(tensor)
probabilities = torch.nn.functional.sigmoid(logits[0])
indices = torch.where(probabilities > threshold)[0]
values = probabilities[indices]
temp = []
tag_score = dict()
for i in range(indices.size(0)):
temp.append([allowed_tags[indices[i]], values[i].item()])
tag_score[allowed_tags[indices[i]]] = values[i].item()
temp = [t[0] for t in temp]
text_no_impl = ", ".join(temp)
return text_no_impl, tag_score
@spaces.GPU(duration=180)
def process_zip(zip_file, threshold):
with zipfile.ZipFile(zip_file.name) as zip_ref:
dataset = ZipImageDataset(zip_ref, next(model.parameters()).dtype)
dataloader = DataLoader(
dataset,
batch_size=64,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False,
)
all_image_names = []
all_probabilities = []
with torch.no_grad():
for i, batch in enumerate(dataloader):
images = batch["image"]
with torch.autocast(device_type="cuda", dtype=torch.float16):
outputs = model(images)
probabilities = torch.nn.functional.sigmoid(outputs)
for image_name, prob in zip(batch["image_name"], probabilities):
indices = torch.where(prob > threshold)[0]
values = prob[indices]
temp = []
tag_score = dict()
for j in range(indices.size(0)):
temp.append([allowed_tags[indices[j]], values[j].item()])
tag_score[allowed_tags[indices[j]]] = values[j].item()
temp = [t[0] for t in temp]
text_no_impl = ", ".join(temp)
all_image_names.append(image_name)
all_probabilities.append(text_no_impl)
temp_file = NamedTemporaryFile(delete=False, suffix=".zip")
with zipfile.ZipFile(temp_file, "w") as zip_ref:
for image_name, text_no_impl in zip(all_image_names, all_probabilities):
with zip_ref.open(image_name + caption_ext, "w") as file:
file.write(text_no_impl.encode())
temp_file.seek(0)
return temp_file.name
with gr.Blocks() as demo:
with gr.Tab("Single Image"):
gr.Interface(
create_tags,
inputs=[gr.Image(label="Source", sources=['upload', 'webcam'], type='pil'), gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Threshold")],
outputs=[
gr.Textbox(label="Tag String"),
gr.Label(label="Tag Predictions", num_top_classes=200),
],
allow_flagging="never",
)
with gr.Tab("Multiple Images"):
gr.Interface(fn=process_zip, inputs=[gr.File(label="Zip File", file_types=[".zip"]), gr.Slider(minimum=0, maximum=1, value=0.3, step=0.01, label="Threshold")],
outputs=gr.File(type="binary"))
if __name__ == "__main__":
demo.launch() |