cd@bziiit.com
commited on
Commit
·
0e34878
1
Parent(s):
8c27c79
feat : add stream, copy response, model display
Browse files- model/selector.py +1 -1
- pages/chatbot.py +43 -24
- rag.py +7 -2
model/selector.py
CHANGED
@@ -38,5 +38,5 @@ def ModelSelector():
|
|
38 |
|
39 |
if(st.session_state["assistant"]):
|
40 |
splitter = model_mapping[selected_model_option].split(".")
|
41 |
-
st.session_state["assistant"].setModel(ModelManager().get_model(splitter[0], splitter[1]))
|
42 |
|
|
|
38 |
|
39 |
if(st.session_state["assistant"]):
|
40 |
splitter = model_mapping[selected_model_option].split(".")
|
41 |
+
st.session_state["assistant"].setModel(ModelManager().get_model(splitter[0], splitter[1]), splitter[1])
|
42 |
|
pages/chatbot.py
CHANGED
@@ -1,27 +1,39 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
from model import selector
|
4 |
from util import getYamlConfig
|
5 |
-
|
6 |
|
7 |
def display_messages():
|
8 |
-
for i, (msg, is_user) in enumerate(st.session_state["messages"]):
|
9 |
-
message(msg, is_user=is_user, key=str(i))
|
10 |
-
st.session_state["thinking_spinner"] = st.empty()
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
def process_input():
|
14 |
-
if "user_input" in st.session_state and st.session_state["user_input"] and len(st.session_state["user_input"].strip()) > 0:
|
15 |
-
user_text = st.session_state["user_input"].strip()
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def show_prompts():
|
@@ -34,30 +46,37 @@ def show_prompts():
|
|
34 |
|
35 |
for item in yaml_data[categroy]:
|
36 |
if expander.button(item, key=f"button_{item}"):
|
37 |
-
|
38 |
-
process_input()
|
39 |
|
40 |
|
41 |
def page():
|
42 |
st.subheader("Posez vos questions")
|
43 |
|
44 |
-
if "user_input" in st.session_state:
|
45 |
-
process_input()
|
46 |
-
|
47 |
if "assistant" not in st.session_state:
|
48 |
st.text("Assistant non initialisé")
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
# Collpase for default prompts
|
51 |
show_prompts()
|
52 |
|
53 |
# Models selector
|
54 |
selector.ModelSelector()
|
55 |
-
|
56 |
# Displaying messages
|
57 |
display_messages()
|
58 |
|
59 |
-
|
60 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
|
63 |
page()
|
|
|
1 |
import streamlit as st
|
2 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
3 |
from model import selector
|
4 |
from util import getYamlConfig
|
5 |
+
from st_copy_to_clipboard import st_copy_to_clipboard
|
6 |
|
7 |
def display_messages():
|
|
|
|
|
|
|
8 |
|
9 |
+
for i, message in enumerate(st.session_state.chat_history):
|
10 |
+
if isinstance(message, AIMessage):
|
11 |
+
with st.chat_message("AI"):
|
12 |
+
# Display the model from the kwargs
|
13 |
+
model = message.kwargs.get("model", "Unknown Model") # Get the model, default to "Unknown Model"
|
14 |
+
st.write(f"**Model :** {model}")
|
15 |
+
st.markdown(message.content)
|
16 |
+
st_copy_to_clipboard(message.content,key=f"message_{i}")
|
17 |
+
|
18 |
+
elif isinstance(message, HumanMessage):
|
19 |
+
with st.chat_message("Moi"):
|
20 |
+
st.write(message.content)
|
21 |
|
|
|
|
|
|
|
22 |
|
23 |
+
def launchQuery(query: str = None):
|
24 |
+
|
25 |
+
# Initialize the assistant's response
|
26 |
+
full_response = st.write_stream(
|
27 |
+
st.session_state["assistant"].ask(
|
28 |
+
query,
|
29 |
+
prompt_system=st.session_state.prompt_system,
|
30 |
+
messages=st.session_state["chat_history"] if "chat_history" in st.session_state else [],
|
31 |
+
variables=st.session_state["data_dict"]
|
32 |
+
))
|
33 |
+
|
34 |
+
# Temporary placeholder AI message in chat history
|
35 |
+
st.session_state["chat_history"].append(AIMessage(content=full_response, kwargs={"model": st.session_state["assistant"].getReadableModel()}))
|
36 |
+
st.rerun()
|
37 |
|
38 |
|
39 |
def show_prompts():
|
|
|
46 |
|
47 |
for item in yaml_data[categroy]:
|
48 |
if expander.button(item, key=f"button_{item}"):
|
49 |
+
launchQuery(item)
|
|
|
50 |
|
51 |
|
52 |
def page():
|
53 |
st.subheader("Posez vos questions")
|
54 |
|
|
|
|
|
|
|
55 |
if "assistant" not in st.session_state:
|
56 |
st.text("Assistant non initialisé")
|
57 |
|
58 |
+
if "chat_history" not in st.session_state:
|
59 |
+
st.session_state["chat_history"] = []
|
60 |
+
|
61 |
+
st.markdown("<style>iframe{height:50px;}</style>", unsafe_allow_html=True)
|
62 |
+
|
63 |
# Collpase for default prompts
|
64 |
show_prompts()
|
65 |
|
66 |
# Models selector
|
67 |
selector.ModelSelector()
|
68 |
+
|
69 |
# Displaying messages
|
70 |
display_messages()
|
71 |
|
72 |
+
|
73 |
+
user_query = st.chat_input("")
|
74 |
+
if user_query is not None and user_query != "":
|
75 |
+
|
76 |
+
st.session_state["chat_history"].append(HumanMessage(content=user_query))
|
77 |
+
|
78 |
+
# Stream and display response
|
79 |
+
launchQuery(user_query)
|
80 |
|
81 |
|
82 |
page()
|
rag.py
CHANGED
@@ -23,6 +23,7 @@ class Rag:
|
|
23 |
document_vector_store = None
|
24 |
retriever = None
|
25 |
chain = None
|
|
|
26 |
|
27 |
def __init__(self, vectore_store=None):
|
28 |
|
@@ -36,9 +37,13 @@ class Rag:
|
|
36 |
|
37 |
self.vector_store = vectore_store
|
38 |
|
39 |
-
def setModel(self, model):
|
40 |
self.model = model
|
|
|
41 |
|
|
|
|
|
|
|
42 |
def ingestToDb(self, file_path: str, filename: str):
|
43 |
|
44 |
docs = PyPDFLoader(file_path=file_path).load()
|
@@ -105,7 +110,7 @@ class Rag:
|
|
105 |
chain_input.update(extra_vars)
|
106 |
|
107 |
|
108 |
-
return self.chain.
|
109 |
|
110 |
def clear(self):
|
111 |
self.document_vector_store = None
|
|
|
23 |
document_vector_store = None
|
24 |
retriever = None
|
25 |
chain = None
|
26 |
+
readableModelName = ""
|
27 |
|
28 |
def __init__(self, vectore_store=None):
|
29 |
|
|
|
37 |
|
38 |
self.vector_store = vectore_store
|
39 |
|
40 |
+
def setModel(self, model, readableModelName = ""):
|
41 |
self.model = model
|
42 |
+
self.readableModelName = readableModelName
|
43 |
|
44 |
+
def getReadableModel(self):
|
45 |
+
return self.readableModelName
|
46 |
+
|
47 |
def ingestToDb(self, file_path: str, filename: str):
|
48 |
|
49 |
docs = PyPDFLoader(file_path=file_path).load()
|
|
|
110 |
chain_input.update(extra_vars)
|
111 |
|
112 |
|
113 |
+
return self.chain.stream(chain_input)
|
114 |
|
115 |
def clear(self):
|
116 |
self.document_vector_store = None
|