import os import openai from transformers import pipeline, Conversation import gradio as gr import json from dotenv import load_dotenv # Load environment variables from the .env file de forma local load_dotenv() import base64 with open("Iso_Logotipo_Ceibal.png", "rb") as image_file: encoded_image = base64.b64encode(image_file.read()).decode() openai.api_key = os.environ['OPENAI_API_KEY'] def clear_chat(message, chat_history): return "", [] def add_new_message(message,person, chat_history): new_chat = [] new_chat.append({"role": "system", "content": 'Sos {} y tendrás que responder preguntas que te harán escolares entre 7 y 11 años. La idea es que sea como una entrevista en la cual te debes comportar como si fueras {}, por lo que tus respuestas deben corresponder con la información de la vida real de {}. Las respuestas tienen que estar orientadas a escolares entre 7 y 11 años. No respondas preguntas hasta que te pregunten sobre algún tema.'.format(person,person,person)}) for turn in chat_history: user, bot = turn new_chat.append({"role": "user", "content": user}) new_chat.append({"role": "assistant","content":bot}) new_chat.append({"role": "user","content":message}) return new_chat def respond(message, person, chat_history): prompt = add_new_message(message, person, chat_history) # stream = client.generate_stream(prompt, # max_new_tokens=1024, # stop_sequences=["\nUser:", "<|endoftext|>"], # temperature=temperature) # #stop_sequences to not generate the user answer # acc_text = "" response = openai.ChatCompletion.create( model="gpt-4-0125-preview", messages= prompt, temperature=0.5, max_tokens=1000, stream=True, )#.choices[0].message.content #chat_history.append((message, response)) token_counter = 0 partial_words = "" counter=0 for chunk in response: chunk_message = chunk['choices'][0]['delta'] if(len(chat_history))<1: # print("entró acaá") partial_words += chunk_message.content chat_history.append([message,chunk_message.content]) else: # print("antes", chat_history) if(len(chunk_message)!=0): if(len(chunk_message)==2): partial_words += chunk_message.content chat_history.append([message,chunk_message.content]) else: partial_words += chunk_message.content chat_history[-1] =([message,partial_words]) yield "",chat_history with gr.Blocks() as demo: gr.Markdown("""