|
from typing import Optional |
|
|
|
import pandas as pd |
|
import streamlit as st |
|
from datasets import Dataset |
|
|
|
from src.data import encode_dataset, get_collator, get_data, predict |
|
from src.model import get_encoder, get_model, get_tokenizer |
|
from src.subpages import Context |
|
from src.utils import align_sample, device, explode_df |
|
|
|
_TOKENIZER_NAME = ( |
|
"xlm-roberta-base", |
|
"gagan3012/bert-tiny-finetuned-ner", |
|
"distilbert-base-german-cased", |
|
)[0] |
|
|
|
|
|
def _load_models_and_tokenizer( |
|
encoder_model_name: str, |
|
model_name: str, |
|
tokenizer_name: Optional[str], |
|
device: str = "cpu", |
|
): |
|
sentence_encoder = get_encoder(encoder_model_name, device=device) |
|
tokenizer = get_tokenizer(tokenizer_name if tokenizer_name else model_name) |
|
labels = "O B-COMMA".split() if "comma" in model_name else None |
|
model = get_model(model_name, labels=labels) |
|
return sentence_encoder, model, tokenizer |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def load_context( |
|
encoder_model_name: str, |
|
model_name: str, |
|
ds_name: str, |
|
ds_config_name: str, |
|
ds_split_name: str, |
|
split_sample_size: int, |
|
randomize_sample: bool, |
|
**kw_args, |
|
) -> Context: |
|
"""Utility method loading (almost) everything we need for the application. |
|
This exists just because we want to cache the results of this function. |
|
|
|
Args: |
|
encoder_model_name (str): Name of the sentence encoder to load. |
|
model_name (str): Name of the NER model to load. |
|
ds_name (str): Dataset name or path. |
|
ds_config_name (str): Dataset config name. |
|
ds_split_name (str): Dataset split name. |
|
split_sample_size (int): Number of examples to load from the split. |
|
|
|
Returns: |
|
Context: An object containing everything we need for the application. |
|
""" |
|
|
|
sentence_encoder, model, tokenizer = _load_models_and_tokenizer( |
|
encoder_model_name=encoder_model_name, |
|
model_name=model_name, |
|
tokenizer_name=_TOKENIZER_NAME if "comma" in model_name else None, |
|
device=str(device), |
|
) |
|
collator = get_collator(tokenizer) |
|
|
|
|
|
split: Dataset = get_data( |
|
ds_name, ds_config_name, ds_split_name, split_sample_size, randomize_sample |
|
) |
|
tags = split.features["ner_tags"].feature |
|
split_encoded, word_ids, ids = encode_dataset(split, tokenizer) |
|
|
|
|
|
df = predict(split_encoded, model, tokenizer, collator, tags) |
|
df["word_ids"] = word_ids |
|
df["ids"] = ids |
|
|
|
|
|
df_tokens = explode_df(df) |
|
df_tokens_cleaned = df_tokens.query("labels != 'IGN'") |
|
df_merged = pd.DataFrame(df.apply(align_sample, axis=1).tolist()) |
|
df_tokens_merged = explode_df(df_merged) |
|
|
|
return Context( |
|
**{ |
|
"model": model, |
|
"tokenizer": tokenizer, |
|
"sentence_encoder": sentence_encoder, |
|
"df": df, |
|
"df_tokens": df_tokens, |
|
"df_tokens_cleaned": df_tokens_cleaned, |
|
"df_tokens_merged": df_tokens_merged, |
|
"tags": tags, |
|
"labels": tags.names, |
|
"split_sample_size": split_sample_size, |
|
"ds_name": ds_name, |
|
"ds_config_name": ds_config_name, |
|
"ds_split_name": ds_split_name, |
|
"split": split, |
|
} |
|
) |
|
|