ExplaiNER / src /model.py
ceyda's picture
Duplicate from aseifert/ExplaiNER
2d4811a
import streamlit as st
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForTokenClassification # type: ignore
from transformers import AutoTokenizer # type: ignore
@st.experimental_singleton()
def get_model(model_name: str, labels=None):
if labels is None:
return AutoModelForTokenClassification.from_pretrained(
model_name,
output_attentions=True,
) # type: ignore
else:
id2label = {idx: tag for idx, tag in enumerate(labels)}
label2id = {tag: idx for idx, tag in enumerate(labels)}
return AutoModelForTokenClassification.from_pretrained(
model_name,
output_attentions=True,
num_labels=len(labels),
id2label=id2label,
label2id=label2id,
) # type: ignore
@st.experimental_singleton()
def get_encoder(model_name: str, device: str = "cpu"):
return SentenceTransformer(model_name, device=device)
@st.experimental_singleton()
def get_tokenizer(tokenizer_name: str):
return AutoTokenizer.from_pretrained(tokenizer_name)