ExplaiNER / src /utils.py
ceyda's picture
Duplicate from aseifert/ExplaiNER
2d4811a
from pathlib import Path
import matplotlib as matplotlib
import matplotlib.cm as cm
import pandas as pd
import streamlit as st
import tokenizers
import torch
import torch.nn.functional as F
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode
PROJ = Path(__file__).parent
tokenizer_hash_funcs = {
tokenizers.Tokenizer: lambda _: None,
tokenizers.AddedToken: lambda _: None,
}
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu" if torch.has_mps else "cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
classmap = {
"O": "O",
"PER": "πŸ™Ž",
"person": "πŸ™Ž",
"LOC": "🌎",
"location": "🌎",
"ORG": "🏀",
"corporation": "🏀",
"product": "πŸ“±",
"creative": "🎷",
"MISC": "🎷",
}
def aggrid_interactive_table(df: pd.DataFrame) -> dict:
"""Creates an st-aggrid interactive table based on a dataframe.
Args:
df (pd.DataFrame]): Source dataframe
Returns:
dict: The selected row
"""
options = GridOptionsBuilder.from_dataframe(
df, enableRowGroup=True, enableValue=True, enablePivot=True
)
options.configure_side_bar()
# options.configure_default_column(cellRenderer=JsCode('''function(params) {return '<a href="#samples-loss">'+params.value+'</a>'}'''))
options.configure_selection("single")
selection = AgGrid(
df,
enable_enterprise_modules=True,
gridOptions=options.build(),
theme="light",
update_mode=GridUpdateMode.NO_UPDATE,
allow_unsafe_jscode=True,
)
return selection
def explode_df(df: pd.DataFrame) -> pd.DataFrame:
"""Takes a dataframe and explodes all the fields."""
df_tokens = df.apply(pd.Series.explode)
if "losses" in df.columns:
df_tokens["losses"] = df_tokens["losses"].astype(float)
return df_tokens # type: ignore
def align_sample(row: pd.Series):
"""Uses word_ids to align all lists in a sample."""
columns = row.axes[0].to_list()
indices = [i for i, id in enumerate(row.word_ids) if id >= 0 and id != row.word_ids[i - 1]]
out = {}
tokens = []
for i, tok in enumerate(row.tokens):
if row.word_ids[i] == -1:
continue
if row.word_ids[i] != row.word_ids[i - 1]:
tokens.append(tok.lstrip("▁").lstrip("##").rstrip("@@"))
else:
tokens[-1] += tok.lstrip("▁").lstrip("##").rstrip("@@")
out["tokens"] = tokens
if "preds" in columns:
out["preds"] = [row.preds[i] for i in indices]
if "labels" in columns:
out["labels"] = [row.labels[i] for i in indices]
if "losses" in columns:
out["losses"] = [row.losses[i] for i in indices]
if "probs" in columns:
out["probs"] = [row.probs[i] for i in indices]
if "hidden_states" in columns:
out["hidden_states"] = [row.hidden_states[i] for i in indices]
if "ids" in columns:
out["ids"] = row.ids
assert len(tokens) == len(out["preds"]), (tokens, row.tokens)
return out
@st.cache(
allow_output_mutation=True,
hash_funcs=tokenizer_hash_funcs,
)
def tag_text(text: str, tokenizer, model, device: torch.device) -> pd.DataFrame:
"""Tags a given text and creates an (exploded) DataFrame with the predicted labels and probabilities.
Args:
text (str): The text to be processed
tokenizer: Tokenizer to use
model (_type_): Model to use
device (torch.device): The device we want pytorch to use for its calcultaions.
Returns:
pd.DataFrame: A data frame holding the tagged text.
"""
tokens = tokenizer(text).tokens()
tokenized = tokenizer(text, return_tensors="pt")
word_ids = [w if w is not None else -1 for w in tokenized.word_ids()]
input_ids = tokenized.input_ids.to(device)
outputs = model(input_ids, output_hidden_states=True)
preds = torch.argmax(outputs.logits, dim=2)
preds = [model.config.id2label[p] for p in preds[0].cpu().numpy()]
hidden_states = outputs.hidden_states[-1][0].detach().cpu().numpy()
# hidden_states = np.mean([hidden_states, outputs.hidden_states[0][0].detach().cpu().numpy()], axis=0)
probs = 1 // (
torch.min(F.softmax(outputs.logits, dim=-1), dim=-1).values[0].detach().cpu().numpy()
)
df = pd.DataFrame(
[[tokens, word_ids, preds, probs, hidden_states]],
columns="tokens word_ids preds probs hidden_states".split(),
)
merged_df = pd.DataFrame(df.apply(align_sample, axis=1).tolist())
return explode_df(merged_df).reset_index().drop(columns=["index"])
def get_bg_color(label: str):
"""Retrieves a label's color from the session state."""
return st.session_state[f"color_{label}"]
def get_fg_color(bg_color_hex: str) -> str:
"""Chooses the proper (foreground) text color (black/white) for a given background color, maximizing contrast.
Adapted from https://gomakethings.com/dynamically-changing-the-text-color-based-on-background-color-contrast-with-vanilla-js/
Args:
bg_color_hex (str): The background color given as a HEX stirng.
Returns:
str: Either "black" or "white".
"""
r = int(bg_color_hex[1:3], 16)
g = int(bg_color_hex[3:5], 16)
b = int(bg_color_hex[5:7], 16)
yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000
return "black" if (yiq >= 128) else "white"
def colorize_classes(df: pd.DataFrame) -> pd.DataFrame:
"""Colorizes the errors in the dataframe."""
def colorize_row(row):
return [
"background-color: "
+ ("white" if (row["labels"] == "IGN" or (row["preds"] == row["labels"])) else "pink")
+ ";"
] * len(row)
def colorize_col(col):
if col.name == "labels" or col.name == "preds":
bgs = []
fgs = []
for v in col.values:
bgs.append(get_bg_color(v.split("-")[1]) if "-" in v else "#ffffff")
fgs.append(get_fg_color(bgs[-1]))
return [f"background-color: {bg}; color: {fg};" for bg, fg in zip(bgs, fgs)]
return [""] * len(col)
df = df.reset_index().drop(columns=["index"]).T
return df # .style.apply(colorize_col, axis=0)
def htmlify_labeled_example(example: pd.DataFrame) -> str:
"""Builds an HTML (string) representation of a single example.
Args:
example (pd.DataFrame): The example to process.
Returns:
str: An HTML string representation of a single example.
"""
html = []
for _, row in example.iterrows():
pred = row.preds.split("-")[1] if "-" in row.preds else "O"
label = row.labels
label_class = row.labels.split("-")[1] if "-" in row.labels else "O"
color = get_bg_color(row.preds.split("-")[1]) if "-" in row.preds else "#000000"
true_color = get_bg_color(row.labels.split("-")[1]) if "-" in row.labels else "#000000"
font_color = get_fg_color(color) if color else "white"
true_font_color = get_fg_color(true_color) if true_color else "white"
is_correct = row.preds == row.labels
loss_html = (
""
if float(row.losses) < 0.01
else f"<span style='background-color: yellow; color: font_color; padding: 0 5px;'>{row.losses:.3f}</span>"
)
loss_html = ""
if row.labels == row.preds == "O":
html.append(f"<span>{row.tokens}</span>")
elif row.labels == "IGN":
assert False
else:
opacity = "1" if not is_correct else "0.5"
correct = (
""
if is_correct
else f"<span title='{label}' style='background-color: {true_color}; opacity: 1; color: {true_font_color}; padding: 0 5px; border: 1px solid black; min-width: 30px'>{classmap[label_class]}</span>"
)
pred_icon = classmap[pred] if pred != "O" and row.preds[:2] != "I-" else ""
html.append(
f"<span style='border: 1px solid black; color: {color}; padding: 0 5px;' title={row.preds}>{pred_icon + ' '}{row.tokens}</span>{correct}{loss_html}"
)
return " ".join(html)
def color_map_color(value: float, cmap_name="Set1", vmin=0, vmax=1) -> str:
"""Turns a value into a color using a color map."""
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
cmap = cm.get_cmap(cmap_name) # PiYG
rgba = cmap(norm(abs(value)))
color = matplotlib.colors.rgb2hex(rgba[:3])
return color