|
from pathlib import Path |
|
|
|
import matplotlib as matplotlib |
|
import matplotlib.cm as cm |
|
import pandas as pd |
|
import streamlit as st |
|
import tokenizers |
|
import torch |
|
import torch.nn.functional as F |
|
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode |
|
|
|
PROJ = Path(__file__).parent |
|
|
|
tokenizer_hash_funcs = { |
|
tokenizers.Tokenizer: lambda _: None, |
|
tokenizers.AddedToken: lambda _: None, |
|
} |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
classmap = { |
|
"O": "O", |
|
"PER": "π", |
|
"person": "π", |
|
"LOC": "π", |
|
"location": "π", |
|
"ORG": "π€", |
|
"corporation": "π€", |
|
"product": "π±", |
|
"creative": "π·", |
|
"MISC": "π·", |
|
} |
|
|
|
|
|
def aggrid_interactive_table(df: pd.DataFrame) -> dict: |
|
"""Creates an st-aggrid interactive table based on a dataframe. |
|
|
|
Args: |
|
df (pd.DataFrame]): Source dataframe |
|
Returns: |
|
dict: The selected row |
|
""" |
|
options = GridOptionsBuilder.from_dataframe( |
|
df, enableRowGroup=True, enableValue=True, enablePivot=True |
|
) |
|
|
|
options.configure_side_bar() |
|
|
|
|
|
options.configure_selection("single") |
|
selection = AgGrid( |
|
df, |
|
enable_enterprise_modules=True, |
|
gridOptions=options.build(), |
|
theme="light", |
|
update_mode=GridUpdateMode.NO_UPDATE, |
|
allow_unsafe_jscode=True, |
|
) |
|
|
|
return selection |
|
|
|
|
|
def explode_df(df: pd.DataFrame) -> pd.DataFrame: |
|
"""Takes a dataframe and explodes all the fields.""" |
|
|
|
df_tokens = df.apply(pd.Series.explode) |
|
if "losses" in df.columns: |
|
df_tokens["losses"] = df_tokens["losses"].astype(float) |
|
return df_tokens |
|
|
|
|
|
def align_sample(row: pd.Series): |
|
"""Uses word_ids to align all lists in a sample.""" |
|
|
|
columns = row.axes[0].to_list() |
|
indices = [i for i, id in enumerate(row.word_ids) if id >= 0 and id != row.word_ids[i - 1]] |
|
|
|
out = {} |
|
|
|
tokens = [] |
|
for i, tok in enumerate(row.tokens): |
|
if row.word_ids[i] == -1: |
|
continue |
|
|
|
if row.word_ids[i] != row.word_ids[i - 1]: |
|
tokens.append(tok.lstrip("β").lstrip("##").rstrip("@@")) |
|
else: |
|
tokens[-1] += tok.lstrip("β").lstrip("##").rstrip("@@") |
|
out["tokens"] = tokens |
|
|
|
if "preds" in columns: |
|
out["preds"] = [row.preds[i] for i in indices] |
|
|
|
if "labels" in columns: |
|
out["labels"] = [row.labels[i] for i in indices] |
|
|
|
if "losses" in columns: |
|
out["losses"] = [row.losses[i] for i in indices] |
|
|
|
if "probs" in columns: |
|
out["probs"] = [row.probs[i] for i in indices] |
|
|
|
if "hidden_states" in columns: |
|
out["hidden_states"] = [row.hidden_states[i] for i in indices] |
|
|
|
if "ids" in columns: |
|
out["ids"] = row.ids |
|
|
|
assert len(tokens) == len(out["preds"]), (tokens, row.tokens) |
|
|
|
return out |
|
|
|
|
|
@st.cache( |
|
allow_output_mutation=True, |
|
hash_funcs=tokenizer_hash_funcs, |
|
) |
|
def tag_text(text: str, tokenizer, model, device: torch.device) -> pd.DataFrame: |
|
"""Tags a given text and creates an (exploded) DataFrame with the predicted labels and probabilities. |
|
|
|
Args: |
|
text (str): The text to be processed |
|
tokenizer: Tokenizer to use |
|
model (_type_): Model to use |
|
device (torch.device): The device we want pytorch to use for its calcultaions. |
|
|
|
Returns: |
|
pd.DataFrame: A data frame holding the tagged text. |
|
""" |
|
|
|
tokens = tokenizer(text).tokens() |
|
tokenized = tokenizer(text, return_tensors="pt") |
|
word_ids = [w if w is not None else -1 for w in tokenized.word_ids()] |
|
input_ids = tokenized.input_ids.to(device) |
|
outputs = model(input_ids, output_hidden_states=True) |
|
preds = torch.argmax(outputs.logits, dim=2) |
|
preds = [model.config.id2label[p] for p in preds[0].cpu().numpy()] |
|
hidden_states = outputs.hidden_states[-1][0].detach().cpu().numpy() |
|
|
|
|
|
probs = 1 // ( |
|
torch.min(F.softmax(outputs.logits, dim=-1), dim=-1).values[0].detach().cpu().numpy() |
|
) |
|
|
|
df = pd.DataFrame( |
|
[[tokens, word_ids, preds, probs, hidden_states]], |
|
columns="tokens word_ids preds probs hidden_states".split(), |
|
) |
|
merged_df = pd.DataFrame(df.apply(align_sample, axis=1).tolist()) |
|
return explode_df(merged_df).reset_index().drop(columns=["index"]) |
|
|
|
|
|
def get_bg_color(label: str): |
|
"""Retrieves a label's color from the session state.""" |
|
return st.session_state[f"color_{label}"] |
|
|
|
|
|
def get_fg_color(bg_color_hex: str) -> str: |
|
"""Chooses the proper (foreground) text color (black/white) for a given background color, maximizing contrast. |
|
|
|
Adapted from https://gomakethings.com/dynamically-changing-the-text-color-based-on-background-color-contrast-with-vanilla-js/ |
|
|
|
Args: |
|
bg_color_hex (str): The background color given as a HEX stirng. |
|
|
|
Returns: |
|
str: Either "black" or "white". |
|
""" |
|
r = int(bg_color_hex[1:3], 16) |
|
g = int(bg_color_hex[3:5], 16) |
|
b = int(bg_color_hex[5:7], 16) |
|
yiq = ((r * 299) + (g * 587) + (b * 114)) / 1000 |
|
return "black" if (yiq >= 128) else "white" |
|
|
|
|
|
def colorize_classes(df: pd.DataFrame) -> pd.DataFrame: |
|
"""Colorizes the errors in the dataframe.""" |
|
|
|
def colorize_row(row): |
|
return [ |
|
"background-color: " |
|
+ ("white" if (row["labels"] == "IGN" or (row["preds"] == row["labels"])) else "pink") |
|
+ ";" |
|
] * len(row) |
|
|
|
def colorize_col(col): |
|
if col.name == "labels" or col.name == "preds": |
|
bgs = [] |
|
fgs = [] |
|
for v in col.values: |
|
bgs.append(get_bg_color(v.split("-")[1]) if "-" in v else "#ffffff") |
|
fgs.append(get_fg_color(bgs[-1])) |
|
return [f"background-color: {bg}; color: {fg};" for bg, fg in zip(bgs, fgs)] |
|
return [""] * len(col) |
|
|
|
df = df.reset_index().drop(columns=["index"]).T |
|
return df |
|
|
|
|
|
def htmlify_labeled_example(example: pd.DataFrame) -> str: |
|
"""Builds an HTML (string) representation of a single example. |
|
|
|
Args: |
|
example (pd.DataFrame): The example to process. |
|
|
|
Returns: |
|
str: An HTML string representation of a single example. |
|
""" |
|
html = [] |
|
|
|
for _, row in example.iterrows(): |
|
pred = row.preds.split("-")[1] if "-" in row.preds else "O" |
|
label = row.labels |
|
label_class = row.labels.split("-")[1] if "-" in row.labels else "O" |
|
|
|
color = get_bg_color(row.preds.split("-")[1]) if "-" in row.preds else "#000000" |
|
true_color = get_bg_color(row.labels.split("-")[1]) if "-" in row.labels else "#000000" |
|
|
|
font_color = get_fg_color(color) if color else "white" |
|
true_font_color = get_fg_color(true_color) if true_color else "white" |
|
|
|
is_correct = row.preds == row.labels |
|
loss_html = ( |
|
"" |
|
if float(row.losses) < 0.01 |
|
else f"<span style='background-color: yellow; color: font_color; padding: 0 5px;'>{row.losses:.3f}</span>" |
|
) |
|
loss_html = "" |
|
|
|
if row.labels == row.preds == "O": |
|
html.append(f"<span>{row.tokens}</span>") |
|
elif row.labels == "IGN": |
|
assert False |
|
else: |
|
opacity = "1" if not is_correct else "0.5" |
|
correct = ( |
|
"" |
|
if is_correct |
|
else f"<span title='{label}' style='background-color: {true_color}; opacity: 1; color: {true_font_color}; padding: 0 5px; border: 1px solid black; min-width: 30px'>{classmap[label_class]}</span>" |
|
) |
|
pred_icon = classmap[pred] if pred != "O" and row.preds[:2] != "I-" else "" |
|
html.append( |
|
f"<span style='border: 1px solid black; color: {color}; padding: 0 5px;' title={row.preds}>{pred_icon + ' '}{row.tokens}</span>{correct}{loss_html}" |
|
) |
|
|
|
return " ".join(html) |
|
|
|
|
|
def color_map_color(value: float, cmap_name="Set1", vmin=0, vmax=1) -> str: |
|
"""Turns a value into a color using a color map.""" |
|
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax) |
|
cmap = cm.get_cmap(cmap_name) |
|
rgba = cmap(norm(abs(value))) |
|
color = matplotlib.colors.rgb2hex(rgba[:3]) |
|
return color |
|
|