File size: 5,705 Bytes
2e4274a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# ###########################################################################
#
#  CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
#  (C) Cloudera, Inc. 2022
#  All rights reserved.
#
#  Applicable Open Source License: Apache 2.0
#
#  NOTE: Cloudera open source products are modular software products
#  made up of hundreds of individual components, each of which was
#  individually copyrighted.  Each Cloudera open source product is a
#  collective work under U.S. Copyright Law. Your license to use the
#  collective work is as provided in your written agreement with
#  Cloudera.  Used apart from the collective work, this file is
#  licensed for your use pursuant to the open source license
#  identified above.
#
#  This code is provided to you pursuant a written agreement with
#  (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
#  this code. If you do not have a written agreement with Cloudera nor
#  with an authorized and properly licensed third party, you do not
#  have any rights to access nor to use this code.
#
#  Absent a written agreement with Cloudera, Inc. (β€œCloudera”) to the
#  contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
#  KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
#  WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
#  IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
#  FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
#  AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
#  ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
#  OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
#  CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
#  RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
#  BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
#  DATA.
#
# ###########################################################################

import os
from typing import List
from collections import defaultdict
from dataclasses import dataclass

import numpy as np


@dataclass
class StyleAttributeData:
    source_attribute: str
    target_attribute: str
    examples: List[str]
    cls_model_path: str
    seq2seq_model_path: str
    sbert_model_path: str = "sentence-transformers/all-MiniLM-L6-v2"
    hf_base_url: str = "https://huggingface.co/"

    def __post_init__(self):
        self._make_attribute_selection_string()
        self._make_attribute_AND_string()
        self._make_attribute_THAN_string()

    def _make_attribute_selection_string(self):
        self.attribute_selecting_string = (
            f"{self.source_attribute}-{self.target_attribute}"
        )

    def _make_attribute_AND_string(self):
        self.attribute_AND_string = (
            f"**{self.source_attribute}** and **{self.target_attribute}**"
        )

    def _make_attribute_THAN_string(self):
        self.attribute_THAN_string = (
            f"**{self.source_attribute}** than **{self.target_attribute}**"
        )

    def build_model_url(self, model_type: str):
        """
        Build a complete HuggingFace url for the given `model_type`.

        Args:
            model_type (str): "cls", "seq2seq", "sbert"
        """
        attr_name = f"{model_type}_model_path"
        return os.path.join(self.hf_base_url, getattr(self, attr_name))


# instantiate data classes & collect all data class instances
DATA_PACKET = {
    "subjective-to-neutral": StyleAttributeData(
        source_attribute="subjective",
        target_attribute="neutral",
        examples=[
            "another strikingly elegant four-door design for the bentley s3 continental came from james.",
            "the band plays an engaging and contagious rhythm known as brega pop and calypso.",
            "chemical abstracts service (cas), a prominent division of the american chemical society, is the world's leading source of chemical information.",
            "the final fight scene is with the martial arts great, master ninja sho kosugi.",
        ],
        cls_model_path="cffl/bert-base-styleclassification-subjective-neutral",
        seq2seq_model_path="cffl/bart-base-styletransfer-subjective-to-neutral",
    ),
    "informal-to-formal": StyleAttributeData(
        source_attribute="informal",
        target_attribute="formal",
        examples=[
            "that was funny LOL",
            "btw - ur avatar looks familiar",
            "i loooooooooooooooooooooooove going to the movies.",
            "haha, thatd be dope",
        ],
        cls_model_path="cointegrated/roberta-base-formality",
        seq2seq_model_path="prithivida/informal_to_formal_styletransfer",
    ),
}


def format_classification_results(id2label: dict, cls_result):
    """
    Formats classification output to be plotted using Altair.

    Args:
        id2label (dict): Transformer model's label dictionary
        cls_result (List): Classification pipeline output
    """

    labels = [v for k, v in id2label.items()]

    format_cls_result = []

    for i in range(len(labels)):
        temp = defaultdict()
        temp["type"] = labels[i].capitalize()
        temp["value"] = round(cls_result[0]["distribution"][i], 4)

        if i == 0:
            temp["percentage_start"] = 0
            temp["percentage_end"] = temp["value"]
        else:
            temp["percentage_start"] = 1 - temp["value"]
            temp["percentage_end"] = 1

        format_cls_result.append(temp)

    return format_cls_result


def string_to_list_string(text: str):
    return np.expand_dims(np.array(text), axis=0).tolist()