File size: 5,611 Bytes
2e4274a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# ###########################################################################
#
#  CLOUDERA APPLIED MACHINE LEARNING PROTOTYPE (AMP)
#  (C) Cloudera, Inc. 2022
#  All rights reserved.
#
#  Applicable Open Source License: Apache 2.0
#
#  NOTE: Cloudera open source products are modular software products
#  made up of hundreds of individual components, each of which was
#  individually copyrighted.  Each Cloudera open source product is a
#  collective work under U.S. Copyright Law. Your license to use the
#  collective work is as provided in your written agreement with
#  Cloudera.  Used apart from the collective work, this file is
#  licensed for your use pursuant to the open source license
#  identified above.
#
#  This code is provided to you pursuant a written agreement with
#  (i) Cloudera, Inc. or (ii) a third-party authorized to distribute
#  this code. If you do not have a written agreement with Cloudera nor
#  with an authorized and properly licensed third party, you do not
#  have any rights to access nor to use this code.
#
#  Absent a written agreement with Cloudera, Inc. (โ€œClouderaโ€) to the
#  contrary, A) CLOUDERA PROVIDES THIS CODE TO YOU WITHOUT WARRANTIES OF ANY
#  KIND; (B) CLOUDERA DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED
#  WARRANTIES WITH RESPECT TO THIS CODE, INCLUDING BUT NOT LIMITED TO
#  IMPLIED WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY AND
#  FITNESS FOR A PARTICULAR PURPOSE; (C) CLOUDERA IS NOT LIABLE TO YOU,
#  AND WILL NOT DEFEND, INDEMNIFY, NOR HOLD YOU HARMLESS FOR ANY CLAIMS
#  ARISING FROM OR RELATED TO THE CODE; AND (D)WITH RESPECT TO YOUR EXERCISE
#  OF ANY RIGHTS GRANTED TO YOU FOR THE CODE, CLOUDERA IS NOT LIABLE FOR ANY
#  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, PUNITIVE OR
#  CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES
#  RELATED TO LOST REVENUE, LOST PROFITS, LOSS OF INCOME, LOSS OF
#  BUSINESS ADVANTAGE OR UNAVAILABILITY, OR LOSS OR CORRUPTION OF
#  DATA.
#
# ###########################################################################

from typing import Iterable

import altair as alt
from captum.attr._utils.visualization import (
    VisualizationDataRecord,
    format_word_importances,
    _get_color,
)

try:
    from IPython.display import display, HTML

    HAS_IPYTHON = True
except ImportError:
    HAS_IPYTHON = False

def format_classname(classname):
    return f'<td>{classname}</td>'

def visualize_text(
    datarecords: Iterable[VisualizationDataRecord], legend: bool = True
) -> "HTML":  # In quotes because this type doesn't exist in standalone mode
    assert HAS_IPYTHON, (
        "IPython must be available to visualize text. "
        "Please run 'pip install ipython'."
    )

    dom = []
    dom.append(
        '<head><link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous"></head>'
    )
    dom.append("""<table width:100; class="table">""")
    rows = [
        "<thead>"
        "<tr>"
        "<th scope='col'><span class='text-nowrap'>Predicted Label</span></th>"
        "<th scope='col'><span class='text-nowrap'>Attribution Score</span></th>"
        "<th scope='col'><span class='text-nowrap'>Feature Importance</span></th>"
        "</tr>"
        "</thead>"
    ]
    for datarecord in datarecords:
        rows.append(
            "".join(
                [
                    "<tbody>",
                    "<tr>",
                    format_classname(
                        f"{datarecord.pred_class.capitalize()}"
                    ),
                    format_classname(f"{round(datarecord.attr_score.item(), 2)}"),
                    format_word_importances(
                        datarecord.raw_input_ids, datarecord.word_attributions
                    ),
                    "<tr>",
                    "</tbody>",
                ]
            )
        )

    dom.append("".join(rows))
    dom.append("</table>")

    if legend:
        dom.append("<div class='row'>")
        dom.append("<div class='col-6'>")
        dom.append("<b>Legend: </b>")

        for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]):
            dom.append(
                '<span style="display: inline-block; width: 10px; height: 10px; \
                border: 1px solid; background-color: \
                {value}"></span> {label}  '.format(
                    value=_get_color(value), label=label
                )
            )
        dom.append("</div>")
        dom.append("<div class='col-6'></div>")

        dom.append("</div>")

    html = HTML("".join(dom))
    display(html)

    return html


def build_altair_classification_plot(format_cls_result):
    """
    Builds Altair bar chart for classification results.

    Args:
        format_cls_result (List): Output from `format_classification_results()`
    """
    source = alt.pd.DataFrame(format_cls_result)

    color_scale = alt.Scale(
        domain=[record["type"] for record in format_cls_result],
        range=["#00A3AF", "#F96702"],
    )

    c = (
        alt.Chart(source)
        .mark_bar(size=50)
        .encode(
            x=alt.X(
                "percentage_start:Q", axis=alt.Axis(title="Style Distribution (%)")
            ),
            x2=alt.X2("percentage_end:Q"),
            color=alt.Color(
                "type:N",
                legend=alt.Legend(title="Attribute"),
                scale=color_scale,
            ),
        )
        .properties(height=150)
    )

    return c