File size: 7,992 Bytes
0041362
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import numpy as np
from . import utils
from utils import torch_device
import matplotlib.pyplot as plt

def get_unscaled_latents(batch_size, in_channels, height, width, generator, dtype):
    """
    in_channels: often obtained with `unet.config.in_channels`
    """
    # Obtain with torch.float32 and cast to float16 if needed
    # Directly obtaining latents in float16 will lead to different latents
    latents_base = torch.randn(
        (batch_size, in_channels, height // 8, width // 8),
        generator=generator, dtype=dtype
    ).to(torch_device, dtype=dtype)
    
    return latents_base

def get_scaled_latents(batch_size, in_channels, height, width, generator, dtype, scheduler):
    latents_base = get_unscaled_latents(batch_size, in_channels, height, width, generator, dtype)
    latents_base = latents_base * scheduler.init_noise_sigma
    return latents_base 

def blend_latents(latents_bg, latents_fg, fg_mask, fg_blending_ratio=0.01):
    """
    in_channels: often obtained with `unet.config.in_channels`
    """
    assert not torch.allclose(latents_bg, latents_fg), "latents_bg should be independent with latents_fg"
    
    dtype = latents_bg.dtype
    latents = latents_bg * (1. - fg_mask) + (latents_bg * np.sqrt(1. - fg_blending_ratio) + latents_fg * np.sqrt(fg_blending_ratio)) * fg_mask
    latents = latents.to(dtype=dtype)

    return latents

@torch.no_grad()
def compose_latents(model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, latents_bg=None, bg_seed=None, compose_box_to_bg=True):
    unet, scheduler, dtype = model_dict.unet, model_dict.scheduler, model_dict.dtype
    
    if latents_bg is None:
        generator = torch.manual_seed(bg_seed)  # Seed generator to create the inital latent noise
        latents_bg = get_scaled_latents(overall_batch_size, unet.config.in_channels, height, width, generator, dtype, scheduler)
    
    # Other than t=T (idx=0), we only have masked latents. This is to prevent accidentally loading from non-masked part. Use same mask as the one used to compose the latents.
    composed_latents = torch.zeros((num_inference_steps + 1, *latents_bg.shape), dtype=dtype)
    composed_latents[0] = latents_bg
    
    foreground_indices = torch.zeros(latents_bg.shape[-2:], dtype=torch.long)
    
    mask_size = np.array([mask_tensor.sum().item() for mask_tensor in mask_tensor_list])
    # Compose the largest mask first
    mask_order = np.argsort(-mask_size)
    
    if compose_box_to_bg:
        # This has two functionalities: 
        # 1. copies the right initial latents from the right place (for centered so generation), 2. copies the right initial latents (since we have foreground blending) for centered/original so generation.
        for mask_idx in mask_order:
            latents_all, mask_tensor = latents_all_list[mask_idx], mask_tensor_list[mask_idx]
            
            # Note: need to be careful to not copy from zeros due to shifting. 
            mask_tensor = utils.binary_mask_to_box_mask(mask_tensor, to_device=False)

            mask_tensor_expanded = mask_tensor[None, None, None, ...].to(dtype)
            composed_latents[0] = composed_latents[0] * (1. - mask_tensor_expanded) + latents_all[0] * mask_tensor_expanded
    
    # This is still needed with `compose_box_to_bg` to ensure the foreground latent is still visible and to compute foreground indices.
    for mask_idx in mask_order:
        latents_all, mask_tensor = latents_all_list[mask_idx], mask_tensor_list[mask_idx]
        foreground_indices = foreground_indices * (~mask_tensor) + (mask_idx + 1) * mask_tensor
        mask_tensor_expanded = mask_tensor[None, None, None, ...].to(dtype)
        composed_latents = composed_latents * (1. - mask_tensor_expanded) + latents_all * mask_tensor_expanded
        
    composed_latents, foreground_indices = composed_latents.to(torch_device), foreground_indices.to(torch_device)
    return composed_latents, foreground_indices

def align_with_bboxes(latents_all_list, mask_tensor_list, bboxes, horizontal_shift_only=False):
    """
    Each offset in `offset_list` is `(x_offset, y_offset)` (normalized).
    """
    new_latents_all_list, new_mask_tensor_list, offset_list = [], [], []
    for latents_all, mask_tensor, bbox in zip(latents_all_list, mask_tensor_list, bboxes):
        x_src_center, y_src_center = utils.binary_mask_to_center(mask_tensor, normalize=True)
        x_min_dest, y_min_dest, x_max_dest, y_max_dest = bbox
        x_dest_center, y_dest_center = (x_min_dest + x_max_dest) / 2, (y_min_dest + y_max_dest) / 2
        # print("src (x,y):", x_src_center, y_src_center, "dest (x,y):", x_dest_center, y_dest_center)
        x_offset, y_offset = x_dest_center - x_src_center, y_dest_center - y_src_center
        if horizontal_shift_only:
            y_offset = 0.
        offset = x_offset, y_offset
        latents_all = utils.shift_tensor(latents_all, x_offset, y_offset, offset_normalized=True)
        mask_tensor = utils.shift_tensor(mask_tensor, x_offset, y_offset, offset_normalized=True)
        new_latents_all_list.append(latents_all)
        new_mask_tensor_list.append(mask_tensor)
        offset_list.append(offset)

    return new_latents_all_list, new_mask_tensor_list, offset_list

@torch.no_grad()
def compose_latents_with_alignment(
    model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width,
    align_with_overall_bboxes=True, overall_bboxes=None, horizontal_shift_only=False, **kwargs
):
    if align_with_overall_bboxes and len(latents_all_list):
        expanded_overall_bboxes = utils.expand_overall_bboxes(overall_bboxes)
        latents_all_list, mask_tensor_list, offset_list = align_with_bboxes(latents_all_list, mask_tensor_list, bboxes=expanded_overall_bboxes, horizontal_shift_only=horizontal_shift_only)
    else:
        offset_list = [(0., 0.) for _ in range(len(latents_all_list))]
    composed_latents, foreground_indices = compose_latents(model_dict, latents_all_list, mask_tensor_list, num_inference_steps, overall_batch_size, height, width, **kwargs)
    return composed_latents, foreground_indices, offset_list

def get_input_latents_list(model_dict, bg_seed, fg_seed_start, fg_blending_ratio, height, width, so_prompt_phrase_box_list=None, so_boxes=None, verbose=False):
    """
    Note: the returned input latents are scaled by `scheduler.init_noise_sigma`
    """
    unet, scheduler, dtype = model_dict.unet, model_dict.scheduler, model_dict.dtype
    
    generator_bg = torch.manual_seed(bg_seed)  # Seed generator to create the inital latent noise
    latents_bg = get_unscaled_latents(batch_size=1, in_channels=unet.config.in_channels, height=height, width=width, generator=generator_bg, dtype=dtype)

    input_latents_list = []
    
    if so_boxes is None:
        # For compatibility
        so_boxes = [item[-1] for item in so_prompt_phrase_box_list]
    
    # change this changes the foreground initial noise
    for idx, obj_box in enumerate(so_boxes):
        H, W = height // 8, width // 8
        fg_mask = utils.proportion_to_mask(obj_box, H, W)

        if verbose:
            plt.imshow(fg_mask.cpu().numpy())
            plt.show()
        
        fg_seed = fg_seed_start + idx
        if fg_seed == bg_seed:
            # We should have different seeds for foreground and background
            fg_seed += 12345
        
        generator_fg = torch.manual_seed(fg_seed)
        latents_fg = get_unscaled_latents(batch_size=1, in_channels=unet.config.in_channels, height=height, width=width, generator=generator_fg, dtype=dtype)
    
        input_latents = blend_latents(latents_bg, latents_fg, fg_mask, fg_blending_ratio=fg_blending_ratio)
    
        input_latents = input_latents * scheduler.init_noise_sigma
    
        input_latents_list.append(input_latents)
    
    latents_bg = latents_bg * scheduler.init_noise_sigma
    
    return input_latents_list, latents_bg