LLM_Diffusion / utils /utils.py
cfhsu0000's picture
Upload 33 files
0041362
import torch
from PIL import ImageDraw
import numpy as np
import os
import gc
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
def draw_box(pil_img, bboxes, phrases):
draw = ImageDraw.Draw(pil_img)
# font = ImageFont.truetype('./FreeMono.ttf', 25)
for obj_bbox, phrase in zip(bboxes, phrases):
x_0, y_0, x_1, y_1 = obj_bbox[0], obj_bbox[1], obj_bbox[2], obj_bbox[3]
draw.rectangle([int(x_0 * 512), int(y_0 * 512), int(x_1 * 512), int(y_1 * 512)], outline='red', width=5)
draw.text((int(x_0 * 512) + 5, int(y_0 * 512) + 5), phrase, font=None, fill=(255, 0, 0))
return pil_img
def get_centered_box(box, horizontal_center_only=True):
x_min, y_min, x_max, y_max = box
w = x_max - x_min
if horizontal_center_only:
return [0.5 - w/2, y_min, 0.5 + w/2, y_max]
h = y_max - y_min
return [0.5 - w/2, 0.5 - h/2, 0.5 + w/2, 0.5 + h/2]
# NOTE: this changes the behavior of the function
def proportion_to_mask(obj_box, H, W, use_legacy=False, return_np=False):
x_min, y_min, x_max, y_max = scale_proportion(obj_box, H, W, use_legacy)
if return_np:
mask = np.zeros((H, W))
else:
mask = torch.zeros(H, W).to(torch_device)
mask[y_min: y_max, x_min: x_max] = 1.
return mask
def scale_proportion(obj_box, H, W, use_legacy=False):
if use_legacy:
# Bias towards the top-left corner
x_min, y_min, x_max, y_max = int(obj_box[0] * W), int(obj_box[1] * H), int(obj_box[2] * W), int(obj_box[3] * H)
else:
# Separately rounding box_w and box_h to allow shift invariant box sizes. Otherwise box sizes may change when both coordinates being rounded end with ".5".
x_min, y_min = round(obj_box[0] * W), round(obj_box[1] * H)
box_w, box_h = round((obj_box[2] - obj_box[0]) * W), round((obj_box[3] - obj_box[1]) * H)
x_max, y_max = x_min + box_w, y_min + box_h
x_min, y_min = max(x_min, 0), max(y_min, 0)
x_max, y_max = min(x_max, W), min(y_max, H)
return x_min, y_min, x_max, y_max
def binary_mask_to_box(mask, enlarge_box_by_one=True, w_scale=1, h_scale=1):
if isinstance(mask, torch.Tensor):
mask_loc = torch.where(mask)
else:
mask_loc = np.where(mask)
height, width = mask.shape
if len(mask_loc) == 0:
raise ValueError('The mask is empty')
if enlarge_box_by_one:
ymin, ymax = max(min(mask_loc[0]) - 1, 0), min(max(mask_loc[0]) + 1, height)
xmin, xmax = max(min(mask_loc[1]) - 1, 0), min(max(mask_loc[1]) + 1, width)
else:
ymin, ymax = min(mask_loc[0]), max(mask_loc[0])
xmin, xmax = min(mask_loc[1]), max(mask_loc[1])
box = [xmin * w_scale, ymin * h_scale, xmax * w_scale, ymax * h_scale]
return box
def binary_mask_to_box_mask(mask, to_device=True):
box = binary_mask_to_box(mask)
x_min, y_min, x_max, y_max = box
H, W = mask.shape
mask = torch.zeros(H, W)
if to_device:
mask = mask.to(torch_device)
mask[y_min: y_max+1, x_min: x_max+1] = 1.
return mask
def binary_mask_to_center(mask, normalize=False):
"""
This computes the mass center of the mask.
normalize: the coords range from 0 to 1
Reference: https://stackoverflow.com/a/66184125
"""
h, w = mask.shape
total = mask.sum()
if isinstance(mask, torch.Tensor):
x_coord = ((mask.sum(dim=0) @ torch.arange(w)) / total).item()
y_coord = ((mask.sum(dim=1) @ torch.arange(h)) / total).item()
else:
x_coord = (mask.sum(axis=0) @ np.arange(w)) / total
y_coord = (mask.sum(axis=1) @ np.arange(h)) / total
if normalize:
x_coord, y_coord = x_coord / w, y_coord / h
return x_coord, y_coord
def iou(mask, masks, eps=1e-6):
# mask: [h, w], masks: [n, h, w]
mask = mask[None].astype(bool)
masks = masks.astype(bool)
i = (mask & masks).sum(axis=(1,2))
u = (mask | masks).sum(axis=(1,2))
return i / (u + eps)
def free_memory():
gc.collect()
torch.cuda.empty_cache()
def expand_overall_bboxes(overall_bboxes):
"""
Expand overall bboxes from a 3d list to 2d list:
Input: [[box 1 for phrase 1, box 2 for phrase 1], ...]
Output: [box 1, box 2, ...]
"""
return sum(overall_bboxes, start=[])
def shift_tensor(tensor, x_offset, y_offset, base_w=8, base_h=8, offset_normalized=False, ignore_last_dim=False):
"""base_w and base_h: make sure the shift is aligned in the latent and multiple levels of cross attention"""
if ignore_last_dim:
tensor_h, tensor_w = tensor.shape[-3:-1]
else:
tensor_h, tensor_w = tensor.shape[-2:]
if offset_normalized:
assert tensor_h % base_h == 0 and tensor_w % base_w == 0, f"{tensor_h, tensor_w} is not a multiple of {base_h, base_w}"
scale_from_base_h, scale_from_base_w = tensor_h // base_h, tensor_w // base_w
x_offset, y_offset = round(x_offset * base_w) * scale_from_base_w, round(y_offset * base_h) * scale_from_base_h
new_tensor = torch.zeros_like(tensor)
overlap_w = tensor_w - abs(x_offset)
overlap_h = tensor_h - abs(y_offset)
if y_offset >= 0:
y_src_start = 0
y_dest_start = y_offset
else:
y_src_start = -y_offset
y_dest_start = 0
if x_offset >= 0:
x_src_start = 0
x_dest_start = x_offset
else:
x_src_start = -x_offset
x_dest_start = 0
if ignore_last_dim:
# For cross attention maps, the third to last and the second to last are the 2D dimensions after unflatten.
new_tensor[..., y_dest_start:y_dest_start+overlap_h, x_dest_start:x_dest_start+overlap_w, :] = tensor[..., y_src_start:y_src_start+overlap_h, x_src_start:x_src_start+overlap_w, :]
else:
new_tensor[..., y_dest_start:y_dest_start+overlap_h, x_dest_start:x_dest_start+overlap_w] = tensor[..., y_src_start:y_src_start+overlap_h, x_src_start:x_src_start+overlap_w]
return new_tensor