SafeMate / app.py
cga-telice's picture
Upload 7 files
2ca8127 verified
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python)
# OpenAI Chat completion
import os
from dotenv import load_dotenv
from getpass import getpass
from operator import itemgetter
import openai
from openai import AsyncOpenAI # importing openai for API usage
import chainlit as cl # importing chainlit for our app
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain import hub
from langchain.prompts import ChatPromptTemplate
import faiss
# Working directory
# Get the absolute path to the directory containing the script
script_dir = os.path.dirname(os.path.abspath(__file__))
# Change the current working directory to the script directory
os.chdir(script_dir)
# Set the enviroment variables
load_dotenv()
openai.api_key = os.getenv("OPENAI_API_KEY")
# Load the document vector store
file_name = "Seattle"
path_raw = "data//raw//" + file_name + ".pdf" # The path where the raw documents are stored
path_processed = "data//processed//" + file_name + ".faiss" # The path where we will store the index
embeddings = OpenAIEmbeddings(
model="text-embedding-3-small"
)
vector_store = FAISS.from_texts([""], embeddings)
vs=vector_store.load_local(path_processed, embeddings, allow_dangerous_deserialization=True)
# Build the retriever
retriever = vs.as_retriever()
# Configure the Prompt templates
system_template = """You are a helpful but prudent occupational health and
safety assistant. Your anwswers will be grounded on the context.
If you don´t know an answer you will say that you don´t know.
"""
user_template = """
# Context:
{context}
# Question:
{question}
"""
@cl.on_chat_start # marks a function that will be executed at the start of a user session
async def start_chat():
settings = {
"model": "gpt-3.5-turbo",
"temperature": 0,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
cl.user_session.set("settings", settings)
@cl.on_message # marks a function that should be run each time the chatbot receives a message from a user
async def main(message: cl.Message):
settings = cl.user_session.get("settings") # gets the settings of the started session
client = AsyncOpenAI()
document_list = retriever.invoke(message.content)
context = " ".join([doc.page_content for doc in document_list])
print(message.content)
print(context)
prompt = Prompt(
provider=ChatOpenAI.id,
messages=[
PromptMessage(
role="system",
template=system_template,
formatted=system_template,
),
PromptMessage(
role="user",
template=user_template,
formatted=user_template.format(question=message.content, context=context),
),
],
inputs={"question": message.content, "context": context},
settings=settings,
)
print([m.to_openai() for m in prompt.messages])
msg = cl.Message(content="")
# Call OpenAI
async for stream_resp in await client.chat.completions.create(
messages=[m.to_openai() for m in prompt.messages], stream=True, **settings
):
token = stream_resp.choices[0].delta.content
if not token:
token = ""
await msg.stream_token(token)
# Update the prompt object with the completion
prompt.completion = msg.content
msg.prompt = prompt
# Send and close the message stream
await msg.send()