Spaces:
Runtime error
Runtime error
File size: 1,086 Bytes
bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e bdab8dd 8fdaf9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import numpy as np
import torch
import pandas as pd
import torch.nn.functional as F
model_name = "unitary/toxic-bert"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
df = pd.DataFrame(columns=("Tweet", "Toxicity", "Probability"))
sample_tweets = ["Ask Sityush to clean up his behavior than issue me nonsensical warnings...", "be a man and lets discuss it-maybe over the phone?", "Don't look, come or think of comming back! Tosser."]
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
results = classifier(sample_tweets)
batch = tokenizer(sample_tweets, padding=True, truncation=True, max_length=512, return_tensors="pt")
# assignment 3
st.title("CS482 Project Sentiment Analysis")
st.markdown("**:red[unitary/toxic-bert]**")
for i in range(len(sample_tweets)):
df.loc[len(df.index)] = [sample_tweets[i], results[i]["label"], results[i]["score"]]
st.table(df) |