Spaces:
Runtime error
Runtime error
Merge pull request #4 from cgr28/milestone-3
Browse files- .gitignore +1 -0
- app.py +22 -20
- requirements.txt +28 -1
- train.py +106 -0
.gitignore
CHANGED
@@ -127,3 +127,4 @@ dmypy.json
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
|
|
|
127 |
|
128 |
# Pyre type checker
|
129 |
.pyre/
|
130 |
+
data/
|
app.py
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer,
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
if analyze_button:
|
18 |
-
if selected_model=="Model 1":
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
|
20 |
-
model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
|
21 |
-
else:
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
23 |
-
model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
24 |
-
inputs = tokenizer(text, return_tensors="pt")
|
25 |
-
with torch.no_grad():
|
26 |
-
logits = model(**inputs).logits
|
27 |
-
prediction_id = logits.argmax().item()
|
28 |
-
results = model.config.id2label[prediction_id]
|
29 |
-
st.write(results)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
+
import pandas as pd
|
6 |
+
import torch.nn.functional as F
|
7 |
|
8 |
+
model_name = "unitary/toxic-bert"
|
9 |
+
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
12 |
+
|
13 |
+
|
14 |
+
df = pd.DataFrame(columns=("Tweet", "Toxicity", "Probability"))
|
15 |
|
16 |
+
sample_tweets = ["Ask Sityush to clean up his behavior than issue me nonsensical warnings...", "be a man and lets discuss it-maybe over the phone?", "Don't look, come or think of comming back! Tosser."]
|
17 |
|
18 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
19 |
+
results = classifier(sample_tweets)
|
20 |
+
|
21 |
+
batch = tokenizer(sample_tweets, padding=True, truncation=True, max_length=512, return_tensors="pt")
|
22 |
+
|
23 |
+
# assignment 3
|
24 |
+
st.title("CS482 Project Sentiment Analysis")
|
25 |
|
26 |
+
st.markdown("**:red[unitary/toxic-bert]**")
|
27 |
|
28 |
+
for i in range(len(sample_tweets)):
|
29 |
+
df.loc[len(df.index)] = [sample_tweets[i], results[i]["label"], results[i]["score"]]
|
30 |
|
31 |
+
st.table(df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -5,23 +5,43 @@ cachetools==5.3.0
|
|
5 |
certifi==2022.12.7
|
6 |
charset-normalizer==3.1.0
|
7 |
click==8.1.3
|
|
|
|
|
|
|
8 |
decorator==5.1.1
|
9 |
emoji==0.6.0
|
10 |
entrypoints==0.4
|
11 |
filelock==3.10.6
|
|
|
12 |
gitdb==4.0.10
|
13 |
GitPython==3.1.31
|
14 |
huggingface-hub==0.13.3
|
15 |
idna==3.4
|
16 |
importlib-metadata==6.1.0
|
|
|
17 |
Jinja2==3.1.2
|
|
|
18 |
jsonschema==4.17.3
|
|
|
|
|
19 |
markdown-it-py==2.2.0
|
20 |
MarkupSafe==2.1.2
|
|
|
21 |
mdurl==0.1.2
|
22 |
mpmath==1.3.0
|
23 |
networkx==3.0
|
24 |
numpy==1.24.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
packaging==23.0
|
26 |
pandas==1.5.3
|
27 |
Pillow==9.4.0
|
@@ -30,6 +50,7 @@ pyarrow==11.0.0
|
|
30 |
pydeck==0.8.0
|
31 |
Pygments==2.14.0
|
32 |
Pympler==1.0.1
|
|
|
33 |
pyrsistent==0.19.3
|
34 |
python-dateutil==2.8.2
|
35 |
pytz==2023.3
|
@@ -38,11 +59,15 @@ PyYAML==6.0
|
|
38 |
regex==2023.3.23
|
39 |
requests==2.28.2
|
40 |
rich==13.3.3
|
|
|
|
|
41 |
semver==3.0.0
|
42 |
six==1.16.0
|
|
|
43 |
smmap==5.0.0
|
44 |
streamlit==1.20.0
|
45 |
sympy==1.11.1
|
|
|
46 |
tokenizers==0.13.2
|
47 |
toml==0.10.2
|
48 |
toolz==0.12.0
|
@@ -51,9 +76,11 @@ torchvision==0.15.1
|
|
51 |
tornado==6.2
|
52 |
tqdm==4.65.0
|
53 |
transformers==4.27.4
|
54 |
-
|
|
|
55 |
tzdata==2023.3
|
56 |
tzlocal==4.3
|
57 |
urllib3==1.26.15
|
58 |
validators==0.20.0
|
|
|
59 |
zipp==3.15.0
|
|
|
5 |
certifi==2022.12.7
|
6 |
charset-normalizer==3.1.0
|
7 |
click==8.1.3
|
8 |
+
cmake==3.26.3
|
9 |
+
contourpy==1.0.7
|
10 |
+
cycler==0.11.0
|
11 |
decorator==5.1.1
|
12 |
emoji==0.6.0
|
13 |
entrypoints==0.4
|
14 |
filelock==3.10.6
|
15 |
+
fonttools==4.39.3
|
16 |
gitdb==4.0.10
|
17 |
GitPython==3.1.31
|
18 |
huggingface-hub==0.13.3
|
19 |
idna==3.4
|
20 |
importlib-metadata==6.1.0
|
21 |
+
importlib-resources==5.12.0
|
22 |
Jinja2==3.1.2
|
23 |
+
joblib==1.2.0
|
24 |
jsonschema==4.17.3
|
25 |
+
kiwisolver==1.4.4
|
26 |
+
lit==16.0.1
|
27 |
markdown-it-py==2.2.0
|
28 |
MarkupSafe==2.1.2
|
29 |
+
matplotlib==3.7.1
|
30 |
mdurl==0.1.2
|
31 |
mpmath==1.3.0
|
32 |
networkx==3.0
|
33 |
numpy==1.24.2
|
34 |
+
nvidia-cublas-cu11==11.10.3.66
|
35 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
36 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
37 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
38 |
+
nvidia-cudnn-cu11==8.5.0.96
|
39 |
+
nvidia-cufft-cu11==10.9.0.58
|
40 |
+
nvidia-curand-cu11==10.2.10.91
|
41 |
+
nvidia-cusolver-cu11==11.4.0.1
|
42 |
+
nvidia-cusparse-cu11==11.7.4.91
|
43 |
+
nvidia-nccl-cu11==2.14.3
|
44 |
+
nvidia-nvtx-cu11==11.7.91
|
45 |
packaging==23.0
|
46 |
pandas==1.5.3
|
47 |
Pillow==9.4.0
|
|
|
50 |
pydeck==0.8.0
|
51 |
Pygments==2.14.0
|
52 |
Pympler==1.0.1
|
53 |
+
pyparsing==3.0.9
|
54 |
pyrsistent==0.19.3
|
55 |
python-dateutil==2.8.2
|
56 |
pytz==2023.3
|
|
|
59 |
regex==2023.3.23
|
60 |
requests==2.28.2
|
61 |
rich==13.3.3
|
62 |
+
scikit-learn==1.2.2
|
63 |
+
scipy==1.10.1
|
64 |
semver==3.0.0
|
65 |
six==1.16.0
|
66 |
+
sklearn==0.0.post4
|
67 |
smmap==5.0.0
|
68 |
streamlit==1.20.0
|
69 |
sympy==1.11.1
|
70 |
+
threadpoolctl==3.1.0
|
71 |
tokenizers==0.13.2
|
72 |
toml==0.10.2
|
73 |
toolz==0.12.0
|
|
|
76 |
tornado==6.2
|
77 |
tqdm==4.65.0
|
78 |
transformers==4.27.4
|
79 |
+
triton==2.0.0
|
80 |
+
typing_extensions==4.5.0
|
81 |
tzdata==2023.3
|
82 |
tzlocal==4.3
|
83 |
urllib3==1.26.15
|
84 |
validators==0.20.0
|
85 |
+
watchdog==3.0.0
|
86 |
zipp==3.15.0
|
train.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertTokenizerFast, BertModel, Trainer, TrainingArguments
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
# from torch.optim import AdamW
|
5 |
+
import pandas as pd
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
|
8 |
+
|
9 |
+
# assignment 3
|
10 |
+
model_name = "bert-base-uncased"
|
11 |
+
|
12 |
+
class ToxicDataset(Dataset):
|
13 |
+
|
14 |
+
def __init__(self, encodings, labels):
|
15 |
+
self.encodings = encodings
|
16 |
+
self.labels = labels
|
17 |
+
|
18 |
+
def __getitem__(self, idx):
|
19 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
20 |
+
item["labels"] = torch.tensor(self.labels[idx])
|
21 |
+
return item
|
22 |
+
|
23 |
+
def __len__(self):
|
24 |
+
return len(self.labels)
|
25 |
+
|
26 |
+
print("Reading data...")
|
27 |
+
data = pd.read_csv("./data/train.csv")
|
28 |
+
toxic_data = pd.DataFrame()
|
29 |
+
toxic_data["text"] = data["comment_text"]
|
30 |
+
toxic_data["labels"] = data.iloc[:, 2:].values.tolist()
|
31 |
+
|
32 |
+
print("Data read. Splitting data...")
|
33 |
+
train_texts, val_texts, train_labels, val_labels = train_test_split(toxic_data.text.to_list(), toxic_data.labels.to_list(), test_size=.2)
|
34 |
+
|
35 |
+
|
36 |
+
print("Data split. Tokenizing data...")
|
37 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
38 |
+
|
39 |
+
train_encodings = tokenizer.batch_encode_plus(train_texts, truncation=True, padding=True, return_tensors='pt')
|
40 |
+
val_encodings = tokenizer.batch_encode_plus(val_texts, truncation=True, padding=True, return_tensors='pt')
|
41 |
+
|
42 |
+
|
43 |
+
train_dataset = ToxicDataset(train_encodings, train_labels)
|
44 |
+
val_dataset = ToxicDataset(val_encodings, val_labels)
|
45 |
+
|
46 |
+
print("Data tokenized. Beginning training...")
|
47 |
+
|
48 |
+
training_args = TrainingArguments(
|
49 |
+
output_dir="./results",
|
50 |
+
num_train_epochs=2,
|
51 |
+
per_device_train_batch_size=4,
|
52 |
+
per_device_eval_batch_size=16,
|
53 |
+
warmup_steps=500,
|
54 |
+
weight_decay=0.01,
|
55 |
+
logging_dir="./logs",
|
56 |
+
logging_steps=10,
|
57 |
+
)
|
58 |
+
|
59 |
+
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
60 |
+
|
61 |
+
model = BertModel.from_pretrained(model_name, num_labels=6)
|
62 |
+
|
63 |
+
trainer = Trainer(
|
64 |
+
model=model,
|
65 |
+
args=training_args,
|
66 |
+
train_dataset=train_dataset,
|
67 |
+
eval_dataset=val_dataset,
|
68 |
+
)
|
69 |
+
|
70 |
+
trainer.train()
|
71 |
+
|
72 |
+
# model = DistilBertForSequenceClassification.from_pretrained(model_name, num_labels=6)
|
73 |
+
|
74 |
+
# model.to(device)
|
75 |
+
# model.train()
|
76 |
+
|
77 |
+
# train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
|
78 |
+
|
79 |
+
# optim = AdamW(model.parameters(), lr=5e-5)
|
80 |
+
|
81 |
+
# num_train_epochs = 2
|
82 |
+
|
83 |
+
# for epoch in range(num_train_epochs):
|
84 |
+
# for batch in train_loader:
|
85 |
+
# optim.zero_grad()
|
86 |
+
# input_ids = batch["input_ids"].to(device)
|
87 |
+
# attention_mask = batch["attention_mask"].to(device)
|
88 |
+
# labels = batch["labels"].to(device)
|
89 |
+
|
90 |
+
# outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
91 |
+
|
92 |
+
# loss = outputs[0]
|
93 |
+
# loss.backward()
|
94 |
+
# optim.step()
|
95 |
+
|
96 |
+
# model.eval()
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
print("Training complete. Saving model...")
|
102 |
+
|
103 |
+
save_directory = "./results/model"
|
104 |
+
model.save_pretrained(save_directory)
|
105 |
+
|
106 |
+
print("Model saved.")
|