chainyo's picture
fix pipeline import
5fc3ac3
"""⭐ Text Classification with Optimum and ONNXRuntime
Streamlit application to classify text using multiple models.
Author:
- @ChainYo - https://github.com/ChainYo
"""
import plotly
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
import streamlit as st
from pathlib import Path
from time import sleep
from typing import Dict, List, Union
from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer, ORTQuantizer
from optimum.onnxruntime.configuration import OptimizationConfig, AutoQuantizationConfig
from optimum.pipelines import pipeline as ort_pipeline
from transformers import BertTokenizer, BertForSequenceClassification
from transformers import pipeline as pt_pipeline
from utils import calculate_inference_time
HUB_MODEL_PATH = "yiyanghkust/finbert-tone"
BASE_PATH = Path("models")
ONNX_MODEL_PATH = BASE_PATH.joinpath("model.onnx")
OPTIMIZED_BASE_PATH = BASE_PATH.joinpath("optimized")
OPTIMIZED_MODEL_PATH = OPTIMIZED_BASE_PATH.joinpath("model-optimized.onnx")
QUANTIZED_BASE_PATH = BASE_PATH.joinpath("quantized")
QUANTIZED_MODEL_PATH = QUANTIZED_BASE_PATH.joinpath("model-quantized.onnx")
VAR2LABEL = {
"pt_pipeline": "PyTorch",
"ort_pipeline": "ONNXRuntime",
"ort_optimized_pipeline": "ONNXRuntime (Optimized)",
"ort_quantized_pipeline": "ONNXRuntime (Quantized)",
}
# Check if repositories exist, if not create them
BASE_PATH.mkdir(exist_ok=True)
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
def get_timers(
samples: Union[List[str], str], exp_number: int, only_mean: bool = False
) -> Dict[str, float]:
"""
Calculate inference time for each model for a given sample or list of samples.
Parameters
----------
samples : Union[List[str], str]
Sample or list of samples to calculate inference time for.
exp_number : int
Number of experiments to run.
Returns
-------
Dict[str, float]
Dictionary of inference times for each model for the given samples.
"""
if isinstance(samples, str):
samples = [samples]
timers: Dict[str, float] = {}
for model in VAR2LABEL.keys():
time_buffer = []
st.session_state["pipeline"] = load_pipeline(model)
for _ in range(exp_number):
with calculate_inference_time(time_buffer):
st.session_state["pipeline"](samples)
timers[VAR2LABEL[model]] = np.mean(time_buffer) if only_mean else time_buffer
return timers
def get_plot(timers: Dict[str, Union[float, List[float]]]) -> plotly.graph_objs.Figure:
"""
Plot the inference time for each model.
Parameters
----------
timers : Dict[str, Union[float, List[float]]]
Dictionary of inference times for each model.
"""
data = pd.DataFrame.from_dict(timers, orient="columns")
colors = ["#84353f", "#b4524b", "#f47e58", "#ffbe67"]
fig = ff.create_distplot(
[data[col] for col in data.columns], data.columns, bin_size=0.001, colors=colors, show_curve=False
)
fig.update_layout(title_text="Inference Time", xaxis_title="Inference Time (s)", yaxis_title="Number of Samples")
return fig
def load_pipeline(pipeline_name: str) -> None:
"""
Load a pipeline for a given model.
Parameters
----------
pipeline_name : str
Name of the pipeline to load.
"""
if pipeline_name == "pt_pipeline":
model = BertForSequenceClassification.from_pretrained(HUB_MODEL_PATH, num_labels=3)
pipeline = pt_pipeline("sentiment-analysis", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_pipeline":
model = ORTModelForSequenceClassification.from_pretrained(HUB_MODEL_PATH, from_transformers=True)
if not ONNX_MODEL_PATH.exists():
model.save_pretrained(ONNX_MODEL_PATH)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_optimized_pipeline":
if not OPTIMIZED_MODEL_PATH.exists():
optimization_config = OptimizationConfig(optimization_level=99)
optimizer = ORTOptimizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
optimizer.export(ONNX_MODEL_PATH, OPTIMIZED_MODEL_PATH, optimization_config=optimization_config)
optimizer.model.config.save_pretrained(OPTIMIZED_BASE_PATH)
model = ORTModelForSequenceClassification.from_pretrained(
OPTIMIZED_BASE_PATH, file_name=OPTIMIZED_MODEL_PATH.name
)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
elif pipeline_name == "ort_quantized_pipeline":
if not QUANTIZED_MODEL_PATH.exists():
quantization_config = AutoQuantizationConfig.arm64(is_static=False, per_channel=False)
quantizer = ORTQuantizer.from_pretrained(HUB_MODEL_PATH, feature="sequence-classification")
quantizer.export(ONNX_MODEL_PATH, QUANTIZED_MODEL_PATH, quantization_config=quantization_config)
quantizer.model.config.save_pretrained(QUANTIZED_BASE_PATH)
model = ORTModelForSequenceClassification.from_pretrained(
QUANTIZED_BASE_PATH, file_name=QUANTIZED_MODEL_PATH.name
)
pipeline = ort_pipeline("text-classification", tokenizer=st.session_state["tokenizer"], model=model)
print(type(pipeline))
return pipeline
st.set_page_config(page_title="Optimum Text Classification", page_icon="⭐")
st.title("⭐ Optimum Text Classification")
st.subheader("Classify financial news tone with 🤗 Optimum and ONNXRuntime")
st.markdown("""
[![GitHub](https://img.shields.io/badge/-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ChainYo)
[![HuggingFace](https://img.shields.io/badge/-yellow.svg?style=for-the-badge&logo=)](https://huggingface.co/ChainYo)
[![LinkedIn](https://img.shields.io/badge/-%230077B5.svg?style=for-the-badge&logo=linkedin&logoColor=white)](https://www.linkedin.com/in/thomas-chaigneau-dev/)
[![Discord](https://img.shields.io/badge/Chainyo%233610-%237289DA.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/)
""")
with st.expander("⭐ Details", expanded=True):
st.markdown(
"""
This app is a **demo** of the [🤗 Optimum Text Classification](https://huggingface.co/docs/optimum/onnxruntime/modeling_ort#optimum-inference-with-onnx-runtime) pipeline.
We aim to compare the original pipeline with the ONNXRuntime pipeline.
We use the [Finbert-Tone](https://huggingface.co/yiyanghkust/finbert-tone) model to classify financial news tone for the demo.
You can enter multiple sentences to classify them by separating them with a `; (semicolon)`.
"""
)
if "init_models" not in st.session_state:
st.session_state["init_models"] = True
if st.session_state["init_models"]:
with st.spinner(text="Loading files and models..."):
loading_logs = st.empty()
with loading_logs.container():
BASE_PATH.mkdir(exist_ok=True)
QUANTIZED_BASE_PATH.mkdir(exist_ok=True)
OPTIMIZED_BASE_PATH.mkdir(exist_ok=True)
if "tokenizer" not in st.session_state:
tokenizer = BertTokenizer.from_pretrained(HUB_MODEL_PATH)
st.session_state["tokenizer"] = tokenizer
st.text("✅ Tokenizer loaded.")
if "pipeline" not in st.session_state:
for pipeline in VAR2LABEL.keys():
st.session_state["pipeline"] = load_pipeline(pipeline)
st.text("✅ Models ready.")
sleep(2)
loading_logs.success("🎉 Everything is ready!")
st.session_state["init_models"] = False
if "inference_timers" not in st.session_state:
st.session_state["inference_timers"] = {}
exp_number = st.slider("The number of experiments per model.", min_value=10, max_value=300, value=150)
get_only_mean = st.checkbox("Get only the mean of the inference time for each model.", value=False)
input_text = st.text_area(
"Enter text to classify",
"there is a shortage of capital, and we need extra financing; growth is strong and we have plenty of liquidity; there are doubts about our finances; profits are flat"
)
run_inference = st.button("🚀 Run inference")
if run_inference:
st.text("🔎 Running inference...")
sentences = input_text.split(";")
st.session_state["inference_timers"] = get_timers(samples=sentences, exp_number=exp_number, only_mean=get_only_mean)
st.plotly_chart(get_plot(st.session_state["inference_timers"]), use_container_width=True)