chalisesagun commited on
Commit
c1bd5b0
·
verified ·
1 Parent(s): 268cba6

Create app,py

Browse files
Files changed (1) hide show
  1. app,py +106 -0
app,py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ import streamlit as st
4
+ from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, UnstructuredMarkdownLoader, WebBaseLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain_community.vectorstores import FAISS
8
+ from langchain.chains import RetrievalQA
9
+ from langchain_community.chat_models import ChatOpenAI
10
+
11
+ # Streamlit App Title
12
+ st.title("📄 DeepSeek-Powered RAG Chatbot")
13
+
14
+ # Step 1: Input API Key
15
+ api_key = st.text_input("🔑 Enter your DeepSeek API Key:", type="password")
16
+
17
+ if api_key:
18
+ # Set the API key as an environment variable (optional)
19
+ os.environ["DEEPSEEK_API_KEY"] = api_key
20
+
21
+ # Step 2: Upload Document or Enter Web Link
22
+ input_option = st.radio("Choose input type:", ("Upload Document", "Web Link"))
23
+
24
+ if input_option == "Upload Document":
25
+ uploaded_file = st.file_uploader("📂 Upload a document", type=["pdf", "docx", "md"])
26
+ else:
27
+ web_link = st.text_input("🌐 Enter the web link:")
28
+
29
+ # Use session state to persist the vector_store
30
+ if "vector_store" not in st.session_state:
31
+ st.session_state.vector_store = None
32
+
33
+ if (input_option == "Upload Document" and uploaded_file and st.session_state.vector_store is None) or \
34
+ (input_option == "Web Link" and web_link and st.session_state.vector_store is None):
35
+ try:
36
+ with st.spinner("Processing document..."):
37
+ if input_option == "Upload Document":
38
+ # Save the uploaded file temporarily
39
+ with tempfile.NamedTemporaryFile(delete=False, suffix=f".{uploaded_file.name.split('.')[-1]}") as tmp_file:
40
+ tmp_file.write(uploaded_file.getvalue())
41
+ tmp_file_path = tmp_file.name
42
+
43
+ # Load the document based on file type
44
+ if uploaded_file.name.endswith(".pdf"):
45
+ loader = PyPDFLoader(tmp_file_path)
46
+ elif uploaded_file.name.endswith(".docx"):
47
+ loader = Docx2txtLoader(tmp_file_path)
48
+ elif uploaded_file.name.endswith(".md"):
49
+ loader = UnstructuredMarkdownLoader(tmp_file_path)
50
+ else:
51
+ st.error("Unsupported file type!")
52
+ st.stop()
53
+
54
+ documents = loader.load()
55
+
56
+ # Remove the temporary file
57
+ os.unlink(tmp_file_path)
58
+ else:
59
+ # Load the web page content
60
+ loader = WebBaseLoader(web_link)
61
+ documents = loader.load()
62
+
63
+ # Split the document into chunks
64
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
65
+ chunks = text_splitter.split_documents(documents)
66
+
67
+ # Generate embeddings and store them in a vector database
68
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
69
+ st.session_state.vector_store = FAISS.from_documents(chunks, embeddings)
70
+
71
+ st.success("Document processed successfully!")
72
+ except Exception as e:
73
+ st.error(f"Error processing document: {e}")
74
+ st.stop()
75
+
76
+ # Step 3: Ask Questions About the Document
77
+ if st.session_state.vector_store:
78
+ st.subheader("💬 Chat with Your Document")
79
+ user_query = st.text_input("Ask a question:")
80
+
81
+ if user_query:
82
+ try:
83
+ # Set up the RAG pipeline with DeepSeek LLM
84
+ retriever = st.session_state.vector_store.as_retriever()
85
+ llm = ChatOpenAI(
86
+ model="deepseek-chat",
87
+ openai_api_key=api_key,
88
+ openai_api_base="https://api.deepseek.com/v1",
89
+ temperature=0.85,
90
+ max_tokens=1000 # Adjust token limit for safety
91
+ )
92
+ qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=retriever)
93
+
94
+ # Generate response
95
+ with st.spinner("Generating response..."):
96
+ response = qa_chain.run(user_query)
97
+
98
+ # Check if the response is relevant or not
99
+ if "I don't know" in response or "not in the document" in response.lower():
100
+ response = "I'm here to assist you with questions about uploaded documents or related web links."
101
+
102
+ st.write(f"**Answer:** {response}")
103
+ except Exception as e:
104
+ st.error(f"Error generating response: {e}")
105
+ else:
106
+ st.warning("Please enter your DeepSeek API key to proceed.")