Chaninder Rishi commited on
Commit
8c2030d
·
1 Parent(s): b8d216a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import pandas as pd
2
  import numpy as np
3
  import csv
@@ -13,7 +14,6 @@ df = pd.read_csv('emily_election.csv')
13
 
14
  loaded_model = pickle.load(open(filename, 'rb'))
15
 
16
- """
17
 
18
  df['runtime'] = df['cumulative_ad_runtime'].apply(lambda s: int(s.split('days')[0]))
19
  df['impressions'] = df['cumulative_impressions_by_region'].apply(lambda d: ast.literal_eval(d))
@@ -50,7 +50,7 @@ y = np.asanyarray(new_train[['log_impressions']])
50
  regr.fit (x, y)
51
  y_pred= regr.predict(new_train[['log_runtime', 'log_spend']])
52
 
53
- """
54
  # # The coefficients
55
  #print(regr.coef_)
56
  #print('R-squared score: %.2f' % regr.score(x, y))
 
1
+ import streamlit as st
2
  import pandas as pd
3
  import numpy as np
4
  import csv
 
14
 
15
  loaded_model = pickle.load(open(filename, 'rb'))
16
 
 
17
 
18
  df['runtime'] = df['cumulative_ad_runtime'].apply(lambda s: int(s.split('days')[0]))
19
  df['impressions'] = df['cumulative_impressions_by_region'].apply(lambda d: ast.literal_eval(d))
 
50
  regr.fit (x, y)
51
  y_pred= regr.predict(new_train[['log_runtime', 'log_spend']])
52
 
53
+
54
  # # The coefficients
55
  #print(regr.coef_)
56
  #print('R-squared score: %.2f' % regr.score(x, y))