File size: 23,534 Bytes
88f55d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9ae9c5
88f55d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcdb1f
78346fb
88f55d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13490e
88f55d9
 
b13490e
78346fb
 
 
 
 
 
 
 
b13490e
 
 
78346fb
 
8a683f6
78346fb
88f55d9
 
 
 
c9ae9c5
88f55d9
 
 
 
b13490e
c9ae9c5
88f55d9
 
 
c9ae9c5
88f55d9
 
 
 
78346fb
 
c9ae9c5
78346fb
88f55d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import time
import json
import re
import os
from os import listdir
from os.path import isfile, join
import gradio as gr
import args
import global_vars
from chats import central
from transformers import AutoModelForCausalLM
from miscs.styles import MODEL_SELECTION_CSS
from miscs.js import GET_LOCAL_STORAGE, UPDATE_LEFT_BTNS_STATE
from utils import get_chat_interface, get_chat_manager, get_global_context

ex_file = open("examples.txt", "r")
examples = ex_file.read().split("\n")
ex_btns = []

chl_file = open("channels.txt", "r")
channels = chl_file.read().split("\n")
channel_btns = []

global_vars.initialize_globals()

response_configs = [
    f"configs/response_configs/{f}"
    for f in listdir("configs/response_configs")
    if isfile(join("configs/response_configs", f))
]

summarization_configs = [
    f"configs/summarization_configs/{f}"
    for f in listdir("configs/summarization_configs")
    if isfile(join("configs/summarization_configs", f))
]

model_info = json.load(open("model_cards.json"))

def channel_num(btn_title):
    choice = 0

    for idx, channel in enumerate(channels):
        if channel == btn_title:
            choice = idx

    return choice


def set_chatbot(btn, ld, state):
    choice = channel_num(btn)

    res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
    empty = len(res[choice].pingpongs) == 0
    return (
        res[choice].build_uis(), 
        choice, 
        gr.update(visible=empty), 
        gr.update(interactive=not empty)
    )


def set_example(btn):
    return btn, gr.update(visible=False)


def set_popup_visibility(ld, example_block):
    return example_block


def move_to_second_view(btn):
    info = model_info[btn]

    guard_vram = 5 * 1024.
    vram_req_full = int(info["vram(full)"]) + guard_vram
    vram_req_8bit = int(info["vram(8bit)"]) + guard_vram
    vram_req_4bit = int(info["vram(4bit)"]) + guard_vram
    
    load_mode_list = []
    
    return (
        gr.update(visible=False),
        gr.update(visible=True),
        info["thumb"],
        f"## {btn}",
        f"**Parameters**\n: Approx. {info['parameters']}",
        f"**πŸ€— Hub(base)**\n: {info['hub(base)']}",
        f"**πŸ€— Hub(LoRA)**\n: {info['hub(ckpt)']}",
        info['desc'],
        f"""**Min VRAM requirements** :
|             half precision            |             load_in_8bit           |              load_in_4bit          | 
| ------------------------------------- | ---------------------------------- | ---------------------------------- | 
|   {round(vram_req_full/1024., 1)}GiB  | {round(vram_req_8bit/1024., 1)}GiB | {round(vram_req_4bit/1024., 1)}GiB |
""",
        info['default_gen_config'],
        info['example1'],
        info['example2'],
        info['example3'],
        info['example4'],
        "",
    )


def move_to_first_view():
    return (
        gr.update(visible=True), 
        gr.update(visible=False),
        ""
    )


def get_model_num(
    model_name
):
    model_num = 0
    re_tag = re.compile(r'<[^>]+>')
    model_name = re_tag.sub('', model_name).strip()
    print(model_name)    
    
    for idx, item in enumerate(global_vars.models):
        if item["model_name"] == model_name:
            model_num = idx
            print(idx)
            break
            
    return "Download completed!", model_num

def move_to_third_view(model_num):
    gen_config = global_vars.models[model_num]["gen_config"]

    return (
        "Preparation done!",
        gr.update(visible=False),
        gr.update(visible=True),
        gr.update(label=global_vars.models[model_num]["model_type"]),
        {
            "ppmanager_type": global_vars.models[model_num]["chat_manager"],
            "model_type": global_vars.models[model_num]["model_type"],
        },
        get_global_context(global_vars.models[model_num]["model_type"]),
        gen_config.temperature,
        gen_config.top_p,
        gen_config.top_k,
        gen_config.repetition_penalty,
        gen_config.max_new_tokens,
        gen_config.num_beams,
        gen_config.use_cache,
        gen_config.do_sample,
        gen_config.eos_token_id,
        gen_config.pad_token_id,
    )


def toggle_inspector(view_selector):
    if view_selector == "with context inspector":
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)


def reset_chat(idx, ld, state):
    res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
    res[idx].pingpongs = []
        
    return (
        "",
        [],
        str(res),
        gr.update(visible=True),
        gr.update(interactive=False),
    )

def rollback_last(idx, ld, state):
    res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
    last_user_message = res[idx].pingpongs[-1].ping
    res[idx].pingpongs = res[idx].pingpongs[:-1]
    
    return (
        last_user_message,
        res[idx].build_uis(),
        str(res),
        gr.update(interactive=False)
    )

with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
    with gr.Column() as model_choice_view:
        gr.Markdown("# Choose a Model", elem_classes=["center"])
      
        with gr.Row(elem_id="container"):
            with gr.Column():
                gr.Markdown("""This application is built and provided for anyone who wants to try out open source Large Language Models for free. All the provided models are pre-downloaded and pre-loaded to maximize your experience. This application is hosted on Hugging Face Space with 1 x A10 VM instance. If you want to run the same application on your own environment, be sure to check out the [project repository](https://github.com/deep-diver/LLM-As-Chatbot) for any further information.

From this page, choose a model that you would like to try out. By selecting a model, you will see more detailed description of the model in a separate page. Also note that this page will appear whenever you refresh your browser tab. """)
                with gr.Row(elem_classes=["sub-container"]):
                    # with gr.Column(min_width=20):
                    #     llama_deus_7b = gr.Button("llama-deus-7b", elem_id="llama-deus-7b", elem_classes=["square"])
                    #     gr.Markdown("LLaMA Deus", elem_classes=["center"])                    

                    with gr.Column(min_width=20):                        
                        baize_7b = gr.Button("baize-7b", elem_id="baize-7b", elem_classes=["square"])
                        gr.Markdown("Baize", elem_classes=["center"])                            
                        
#                     with gr.Column(min_width=20):
#                         koalpaca = gr.Button("koalpaca", elem_id="koalpaca", elem_classes=["square"])
#                         gr.Markdown("koalpaca", elem_classes=["center"])                        
                        
                    # with gr.Column(min_width=20):
                    #     evolinstruct_vicuna_13b = gr.Button("evolinstruct-vicuna-13b", elem_id="evolinstruct-vicuna-13b", elem_classes=["square"])
                    #     gr.Markdown("EvolInstruct Vicuna", elem_classes=["center"])                      
                        
                    with gr.Column(min_width=20):
                        guanaco_7b = gr.Button("guanaco-7b", elem_id="guanaco-7b", elem_classes=["square"])
                        gr.Markdown("Guanaco", elem_classes=["center"])
                        
                    # with gr.Column(min_width=20):
                    #     nous_hermes_13b = gr.Button("nous-hermes-13b", elem_id="nous-hermes-13b", elem_classes=["square"])
                    #     gr.Markdown("Nous Hermes", elem_classes=["center"])                        
                        
                progress_view = gr.Textbox(label="Progress")

    with gr.Column(visible=False) as model_review_view:
        gr.Markdown("# Confirm the chosen model", elem_classes=["center"])

        with gr.Column(elem_id="container2"):
            gr.Markdown("""The model is pre-downloaded and pre-loaded for your convenience in this demo application, so you don't need to worry about the `VRAM requirements`. It is there just as a reference. Also, proper `GenerationConfig` is selected and fixed, but you can adjust some of the hyper-parameters once you enter the chatting mode.

Before deciding which model to use, you can expand `Example showcases` to see some of the recorded example pairs of question and answer. It will help you understanding better which model suits you well. Then, click `Confirm` button to enter the chatting mode. If you click `Back` button or refresh the browser tab, the model selection page will appear. 
""")

            with gr.Row():
                model_image = gr.Image(None, interactive=False, show_label=False)
                with gr.Column():
                    model_name = gr.Markdown("**Model name**")
                    model_desc = gr.Markdown("...")                        
                    model_params = gr.Markdown("Parameters\n: ...")             
                    model_base = gr.Markdown("πŸ€— Hub(base)\n: ...")
                    model_ckpt = gr.Markdown("πŸ€— Hub(LoRA)\n: ...")
                    model_vram = gr.Markdown(f"""**Minimal VRAM requirement** :
|          half precision        |        load_in_8bit       |         load_in_4bit      | 
| ------------------------------ | ------------------------- | ------------------------- | 
|   {round(7830/1024., 1)}GiB    | {round(5224/1024., 1)}GiB | {round(4324/1024., 1)}GiB |
""")
                    model_thumbnail_tiny = gr.Textbox("", visible=False)

            with gr.Column():
                gen_config_path = gr.Dropdown(
                    response_configs,
                    value=response_configs[0],
                    interactive=False,
                    label="Gen Config(response)",
                )

                with gr.Accordion("Example showcases", open=False):
                    with gr.Tab("Ex1"):
                        example_showcase1 = gr.Chatbot(
                            [("hello", "world"), ("damn", "good")]
                        )
                    with gr.Tab("Ex2"):
                        example_showcase2 = gr.Chatbot(
                            [("hello", "world"), ("damn", "good")]
                        )
                    with gr.Tab("Ex3"):
                        example_showcase3 = gr.Chatbot(
                            [("hello", "world"), ("damn", "good")]
                        )
                    with gr.Tab("Ex4"):
                        example_showcase4 = gr.Chatbot(
                            [("hello", "world"), ("damn", "good")]
                        )

            with gr.Row():
                back_to_model_choose_btn = gr.Button("Back")
                confirm_btn = gr.Button("Confirm")

            with gr.Column(elem_classes=["progress-view"]):
                txt_view = gr.Textbox(label="Status")
                progress_view2 = gr.Textbox(label="Progress")
                
    with gr.Column(visible=False) as chat_view:
        idx = gr.State(0)
        model_num = gr.State(0)
        chat_state = gr.State()
        local_data = gr.JSON({}, visible=False)

        gr.Markdown("# Chatting", elem_classes=["center"])
        gr.Markdown("""This entire application is built on top of `Gradio`. You can select one of the 10 channels on the left side to start chatting with the model. The model type you chose appear as a label on the top left corner of the chat component as well. Furthermore, you will see which model has responded to your question in each turn with their unique icons. This is because you can go back and forth to select different models from time to time, and you can continue your conversation with different models. With models' icons, you will understand how the conversation has gone better.""")
        
        with gr.Row():
            with gr.Column(scale=1, min_width=180):
                gr.Markdown("GradioChat", elem_id="left-top")

                with gr.Column(elem_id="left-pane"):
                    chat_back_btn = gr.Button("Back", elem_id="chat-back-btn")
                    
                    with gr.Accordion("Histories", elem_id="chat-history-accordion"):
                        channel_btns.append(gr.Button(channels[0], elem_classes=["custom-btn-highlight"]))

                        for channel in channels[1:]:
                            channel_btns.append(gr.Button(channel, elem_classes=["custom-btn"]))

            with gr.Column(scale=8, elem_id="right-pane"):
                with gr.Column(
                    elem_id="initial-popup", visible=False
                ) as example_block:
                    with gr.Row(scale=1):
                        with gr.Column(elem_id="initial-popup-left-pane"):
                            gr.Markdown("GradioChat", elem_id="initial-popup-title")
                            gr.Markdown(
                                "Making the community's best AI chat models available to everyone."
                            )
                        with gr.Column(elem_id="initial-popup-right-pane"):
                            gr.Markdown(
                                "Chat UI is now open sourced on Hugging Face Hub"
                            )
                            gr.Markdown(
                                "check out the [β†— repository](https://huggingface.co/spaces/chansung/test-multi-conv)"
                            )

                    with gr.Column(scale=1):
                        gr.Markdown("Examples")
                        with gr.Row():
                            for example in examples:
                                ex_btns.append(gr.Button(example, elem_classes=["example-btn"]))

                with gr.Column(elem_id="aux-btns-popup", visible=True):
                    with gr.Row():
                        stop = gr.Button("Stop", elem_classes=["aux-btn"], interactive=True)
                        regenerate = gr.Button("Regen", interactive=False, elem_classes=["aux-btn"])
                        clean = gr.Button("Clean", elem_classes=["aux-btn"])

                with gr.Accordion("Context Inspector", elem_id="aux-viewer", open=False):
                    context_inspector = gr.Textbox(
                        "",
                        elem_id="aux-viewer-inspector",
                        label="",
                        lines=30,
                        max_lines=50,
                    )                        
                        
                chatbot = gr.Chatbot(elem_id='chatbot')
                instruction_txtbox = gr.Textbox(
                    placeholder="Ask anything", label="",
                    elem_id="prompt-txt"
                )

        with gr.Accordion("Control Panel", open=False) as control_panel:
            with gr.Column():
                with gr.Column():
                    gr.Markdown("#### Global context")
                    with gr.Accordion("global context will persist during conversation, and it is placed at the top of the prompt", open=False):
                        global_context = gr.Textbox(
                            "global context",
                            lines=5,
                            max_lines=10,
                            interactive=True,
                            elem_id="global-context"
                        )

                    gr.Markdown("#### GenConfig for **response** text generation")
                    with gr.Row():
                        res_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
                        res_topp = gr.Slider(0.0, 2.0, 0, step=0.1, label="top_p", interactive=True)
                        res_topk = gr.Slider(20, 1000, 0, step=1, label="top_k", interactive=True)
                        res_rpen = gr.Slider(0.0, 2.0, 0, step=0.1, label="rep_penalty", interactive=True)
                        res_mnts = gr.Slider(64, 2048, 0, step=1, label="new_tokens", interactive=True)                            
                        res_beams = gr.Slider(1, 4, 0, step=1, label="beams")
                        res_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
                        res_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
                        res_eosid = gr.Number(value=0, visible=False, precision=0)
                        res_padid = gr.Number(value=0, visible=False, precision=0)

                with gr.Column(visible=False):
                    gr.Markdown("#### GenConfig for **summary** text generation")
                    with gr.Row():
                        sum_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
                        sum_topp = gr.Slider(0.0, 2.0, 0, step=0.1, label="top_p", interactive=True)
                        sum_topk = gr.Slider(20, 1000, 0, step=1, label="top_k", interactive=True)
                        sum_rpen = gr.Slider(0.0, 2.0, 0, step=0.1, label="rep_penalty", interactive=True)
                        sum_mnts = gr.Slider(64, 2048, 0, step=1, label="new_tokens", interactive=True)
                        sum_beams = gr.Slider(1, 8, 0, step=1, label="beams", interactive=True)
                        sum_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
                        sum_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
                        sum_eosid = gr.Number(value=0, visible=False, precision=0)
                        sum_padid = gr.Number(value=0, visible=False, precision=0)

                with gr.Column():
                    gr.Markdown("#### Context managements")
                    with gr.Row():
                        ctx_num_lconv = gr.Slider(2, 10, 3, step=1, label="number of recent talks to keep", interactive=True)
                        ctx_sum_prompt = gr.Textbox(
                            "summarize our conversations. what have we discussed about so far?",
                            label="design a prompt to summarize the conversations",
                            visible=False
                        )

        gr.Markdown("""The control panel on the bottom side allows you to adjust three major hyper-parameters. First, you can set the global context of the conversation. Appropriate global context that is recommended by each model's authors is provided by default, but you can set it as you like. Second, you can adjust some of the hyper-parameters of the `GenerationConfig` to decide how you want the model to generate text. `Temperature`, `Top K`, and `New Max Tokens` are some of the available ones. Third, you can adjust the number of recent talks to keep track of. With bigger number, the model will see more of the past conversations.

Lastly, there is a hidden panel on the top right corner, and it will appear when you hover your mouse around it. When expanding the panel, it shows what the model actually sees. That is you can double check how the entire prompt is constructed and fed into the model at each conversation.
""")
                        
        btns = [
            baize_7b, guanaco_7b #nous_hermes_13b, evolinstruct_vicuna_13b, guanaco_13b
            # baize_7b, evolinstruct_vicuna_13b, guanaco_13b, nous_hermes_13b
            # llama_deus_7b, koalpaca, evolinstruct_vicuna_13b, baize_7b, guanaco_33b,
        ]
        for btn in btns:
            btn.click(
                move_to_second_view,
                btn,
                [
                    model_choice_view, model_review_view,
                    model_image, model_name, model_params, model_base, model_ckpt,
                    model_desc, model_vram, gen_config_path,
                    example_showcase1, example_showcase2, example_showcase3, example_showcase4,
                    progress_view
                ]
            )

        back_to_model_choose_btn.click(
            move_to_first_view,
            None,
            [model_choice_view, model_review_view, progress_view2]
        )
        
        confirm_btn.click(
            get_model_num,
            [model_name],
            [progress_view2, model_num]
        ).then(
            move_to_third_view,
            model_num,
            [progress_view2, model_review_view, chat_view, chatbot, chat_state, global_context,
            res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid]
        )
         
        for btn in channel_btns:
            btn.click(
                set_chatbot,
                [btn, local_data, chat_state],
                [chatbot, idx, example_block, regenerate]
            ).then(
                None, btn, None, 
                _js=UPDATE_LEFT_BTNS_STATE        
            )
        
        for btn in ex_btns:
            btn.click(
                set_example,
                [btn],
                [instruction_txtbox, example_block]  
            )

        instruction_txtbox.submit(
            lambda: [
                gr.update(visible=False),
                gr.update(interactive=True)
            ],
            None,
            [example_block, regenerate]
        )
        
        send_event = instruction_txtbox.submit(
            central.chat_stream,
            [idx, local_data, instruction_txtbox, chat_state, model_num,
            global_context, ctx_num_lconv, ctx_sum_prompt,
            res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid],
            [instruction_txtbox, chatbot, context_inspector, local_data],
        )
        
        instruction_txtbox.submit(
            None, local_data, None, 
            _js="(v)=>{ setStorage('local_data',v) }"
        )

        regenerate.click(
            rollback_last,
            [idx, local_data, chat_state],
            [instruction_txtbox, chatbot, local_data, regenerate]
        ).then(
            central.chat_stream,
            [idx, local_data, instruction_txtbox, chat_state, model_num,
            global_context, ctx_num_lconv, ctx_sum_prompt,
            res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid],
            [instruction_txtbox, chatbot, context_inspector, local_data],           
        ).then(
            lambda: gr.update(interactive=True),
            None,
            regenerate
        ).then(
            None, local_data, None, 
            _js="(v)=>{ setStorage('local_data',v) }"  
        )
        
        stop.click(
            None, None, None,
            cancels=[send_event]
        )

        clean.click(
            reset_chat,
            [idx, local_data, chat_state],
            [instruction_txtbox, chatbot, local_data, example_block, regenerate]
        ).then(
            None, local_data, None, 
            _js="(v)=>{ setStorage('local_data',v) }"
        )
        
        chat_back_btn.click(
            lambda: [gr.update(visible=False), gr.update(visible=True)],
            None,
            [chat_view, model_choice_view]
        )
        
        demo.load(
          None,
          inputs=None,
          outputs=[chatbot, local_data],
          _js=GET_LOCAL_STORAGE,
        )          
        
demo.queue(
    concurrency_count=5,
    max_size=256,
).launch(
    debug=True,
)