Spaces:
Runtime error
Runtime error
File size: 23,534 Bytes
88f55d9 c9ae9c5 88f55d9 7dcdb1f 78346fb 88f55d9 b13490e 88f55d9 b13490e 78346fb b13490e 78346fb 8a683f6 78346fb 88f55d9 c9ae9c5 88f55d9 b13490e c9ae9c5 88f55d9 c9ae9c5 88f55d9 78346fb c9ae9c5 78346fb 88f55d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import time
import json
import re
import os
from os import listdir
from os.path import isfile, join
import gradio as gr
import args
import global_vars
from chats import central
from transformers import AutoModelForCausalLM
from miscs.styles import MODEL_SELECTION_CSS
from miscs.js import GET_LOCAL_STORAGE, UPDATE_LEFT_BTNS_STATE
from utils import get_chat_interface, get_chat_manager, get_global_context
ex_file = open("examples.txt", "r")
examples = ex_file.read().split("\n")
ex_btns = []
chl_file = open("channels.txt", "r")
channels = chl_file.read().split("\n")
channel_btns = []
global_vars.initialize_globals()
response_configs = [
f"configs/response_configs/{f}"
for f in listdir("configs/response_configs")
if isfile(join("configs/response_configs", f))
]
summarization_configs = [
f"configs/summarization_configs/{f}"
for f in listdir("configs/summarization_configs")
if isfile(join("configs/summarization_configs", f))
]
model_info = json.load(open("model_cards.json"))
def channel_num(btn_title):
choice = 0
for idx, channel in enumerate(channels):
if channel == btn_title:
choice = idx
return choice
def set_chatbot(btn, ld, state):
choice = channel_num(btn)
res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
empty = len(res[choice].pingpongs) == 0
return (
res[choice].build_uis(),
choice,
gr.update(visible=empty),
gr.update(interactive=not empty)
)
def set_example(btn):
return btn, gr.update(visible=False)
def set_popup_visibility(ld, example_block):
return example_block
def move_to_second_view(btn):
info = model_info[btn]
guard_vram = 5 * 1024.
vram_req_full = int(info["vram(full)"]) + guard_vram
vram_req_8bit = int(info["vram(8bit)"]) + guard_vram
vram_req_4bit = int(info["vram(4bit)"]) + guard_vram
load_mode_list = []
return (
gr.update(visible=False),
gr.update(visible=True),
info["thumb"],
f"## {btn}",
f"**Parameters**\n: Approx. {info['parameters']}",
f"**π€ Hub(base)**\n: {info['hub(base)']}",
f"**π€ Hub(LoRA)**\n: {info['hub(ckpt)']}",
info['desc'],
f"""**Min VRAM requirements** :
| half precision | load_in_8bit | load_in_4bit |
| ------------------------------------- | ---------------------------------- | ---------------------------------- |
| {round(vram_req_full/1024., 1)}GiB | {round(vram_req_8bit/1024., 1)}GiB | {round(vram_req_4bit/1024., 1)}GiB |
""",
info['default_gen_config'],
info['example1'],
info['example2'],
info['example3'],
info['example4'],
"",
)
def move_to_first_view():
return (
gr.update(visible=True),
gr.update(visible=False),
""
)
def get_model_num(
model_name
):
model_num = 0
re_tag = re.compile(r'<[^>]+>')
model_name = re_tag.sub('', model_name).strip()
print(model_name)
for idx, item in enumerate(global_vars.models):
if item["model_name"] == model_name:
model_num = idx
print(idx)
break
return "Download completed!", model_num
def move_to_third_view(model_num):
gen_config = global_vars.models[model_num]["gen_config"]
return (
"Preparation done!",
gr.update(visible=False),
gr.update(visible=True),
gr.update(label=global_vars.models[model_num]["model_type"]),
{
"ppmanager_type": global_vars.models[model_num]["chat_manager"],
"model_type": global_vars.models[model_num]["model_type"],
},
get_global_context(global_vars.models[model_num]["model_type"]),
gen_config.temperature,
gen_config.top_p,
gen_config.top_k,
gen_config.repetition_penalty,
gen_config.max_new_tokens,
gen_config.num_beams,
gen_config.use_cache,
gen_config.do_sample,
gen_config.eos_token_id,
gen_config.pad_token_id,
)
def toggle_inspector(view_selector):
if view_selector == "with context inspector":
return gr.update(visible=True)
else:
return gr.update(visible=False)
def reset_chat(idx, ld, state):
res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
res[idx].pingpongs = []
return (
"",
[],
str(res),
gr.update(visible=True),
gr.update(interactive=False),
)
def rollback_last(idx, ld, state):
res = [state["ppmanager_type"].from_json(json.dumps(ppm_str)) for ppm_str in ld]
last_user_message = res[idx].pingpongs[-1].ping
res[idx].pingpongs = res[idx].pingpongs[:-1]
return (
last_user_message,
res[idx].build_uis(),
str(res),
gr.update(interactive=False)
)
with gr.Blocks(css=MODEL_SELECTION_CSS, theme='gradio/soft') as demo:
with gr.Column() as model_choice_view:
gr.Markdown("# Choose a Model", elem_classes=["center"])
with gr.Row(elem_id="container"):
with gr.Column():
gr.Markdown("""This application is built and provided for anyone who wants to try out open source Large Language Models for free. All the provided models are pre-downloaded and pre-loaded to maximize your experience. This application is hosted on Hugging Face Space with 1 x A10 VM instance. If you want to run the same application on your own environment, be sure to check out the [project repository](https://github.com/deep-diver/LLM-As-Chatbot) for any further information.
From this page, choose a model that you would like to try out. By selecting a model, you will see more detailed description of the model in a separate page. Also note that this page will appear whenever you refresh your browser tab. """)
with gr.Row(elem_classes=["sub-container"]):
# with gr.Column(min_width=20):
# llama_deus_7b = gr.Button("llama-deus-7b", elem_id="llama-deus-7b", elem_classes=["square"])
# gr.Markdown("LLaMA Deus", elem_classes=["center"])
with gr.Column(min_width=20):
baize_7b = gr.Button("baize-7b", elem_id="baize-7b", elem_classes=["square"])
gr.Markdown("Baize", elem_classes=["center"])
# with gr.Column(min_width=20):
# koalpaca = gr.Button("koalpaca", elem_id="koalpaca", elem_classes=["square"])
# gr.Markdown("koalpaca", elem_classes=["center"])
# with gr.Column(min_width=20):
# evolinstruct_vicuna_13b = gr.Button("evolinstruct-vicuna-13b", elem_id="evolinstruct-vicuna-13b", elem_classes=["square"])
# gr.Markdown("EvolInstruct Vicuna", elem_classes=["center"])
with gr.Column(min_width=20):
guanaco_7b = gr.Button("guanaco-7b", elem_id="guanaco-7b", elem_classes=["square"])
gr.Markdown("Guanaco", elem_classes=["center"])
# with gr.Column(min_width=20):
# nous_hermes_13b = gr.Button("nous-hermes-13b", elem_id="nous-hermes-13b", elem_classes=["square"])
# gr.Markdown("Nous Hermes", elem_classes=["center"])
progress_view = gr.Textbox(label="Progress")
with gr.Column(visible=False) as model_review_view:
gr.Markdown("# Confirm the chosen model", elem_classes=["center"])
with gr.Column(elem_id="container2"):
gr.Markdown("""The model is pre-downloaded and pre-loaded for your convenience in this demo application, so you don't need to worry about the `VRAM requirements`. It is there just as a reference. Also, proper `GenerationConfig` is selected and fixed, but you can adjust some of the hyper-parameters once you enter the chatting mode.
Before deciding which model to use, you can expand `Example showcases` to see some of the recorded example pairs of question and answer. It will help you understanding better which model suits you well. Then, click `Confirm` button to enter the chatting mode. If you click `Back` button or refresh the browser tab, the model selection page will appear.
""")
with gr.Row():
model_image = gr.Image(None, interactive=False, show_label=False)
with gr.Column():
model_name = gr.Markdown("**Model name**")
model_desc = gr.Markdown("...")
model_params = gr.Markdown("Parameters\n: ...")
model_base = gr.Markdown("π€ Hub(base)\n: ...")
model_ckpt = gr.Markdown("π€ Hub(LoRA)\n: ...")
model_vram = gr.Markdown(f"""**Minimal VRAM requirement** :
| half precision | load_in_8bit | load_in_4bit |
| ------------------------------ | ------------------------- | ------------------------- |
| {round(7830/1024., 1)}GiB | {round(5224/1024., 1)}GiB | {round(4324/1024., 1)}GiB |
""")
model_thumbnail_tiny = gr.Textbox("", visible=False)
with gr.Column():
gen_config_path = gr.Dropdown(
response_configs,
value=response_configs[0],
interactive=False,
label="Gen Config(response)",
)
with gr.Accordion("Example showcases", open=False):
with gr.Tab("Ex1"):
example_showcase1 = gr.Chatbot(
[("hello", "world"), ("damn", "good")]
)
with gr.Tab("Ex2"):
example_showcase2 = gr.Chatbot(
[("hello", "world"), ("damn", "good")]
)
with gr.Tab("Ex3"):
example_showcase3 = gr.Chatbot(
[("hello", "world"), ("damn", "good")]
)
with gr.Tab("Ex4"):
example_showcase4 = gr.Chatbot(
[("hello", "world"), ("damn", "good")]
)
with gr.Row():
back_to_model_choose_btn = gr.Button("Back")
confirm_btn = gr.Button("Confirm")
with gr.Column(elem_classes=["progress-view"]):
txt_view = gr.Textbox(label="Status")
progress_view2 = gr.Textbox(label="Progress")
with gr.Column(visible=False) as chat_view:
idx = gr.State(0)
model_num = gr.State(0)
chat_state = gr.State()
local_data = gr.JSON({}, visible=False)
gr.Markdown("# Chatting", elem_classes=["center"])
gr.Markdown("""This entire application is built on top of `Gradio`. You can select one of the 10 channels on the left side to start chatting with the model. The model type you chose appear as a label on the top left corner of the chat component as well. Furthermore, you will see which model has responded to your question in each turn with their unique icons. This is because you can go back and forth to select different models from time to time, and you can continue your conversation with different models. With models' icons, you will understand how the conversation has gone better.""")
with gr.Row():
with gr.Column(scale=1, min_width=180):
gr.Markdown("GradioChat", elem_id="left-top")
with gr.Column(elem_id="left-pane"):
chat_back_btn = gr.Button("Back", elem_id="chat-back-btn")
with gr.Accordion("Histories", elem_id="chat-history-accordion"):
channel_btns.append(gr.Button(channels[0], elem_classes=["custom-btn-highlight"]))
for channel in channels[1:]:
channel_btns.append(gr.Button(channel, elem_classes=["custom-btn"]))
with gr.Column(scale=8, elem_id="right-pane"):
with gr.Column(
elem_id="initial-popup", visible=False
) as example_block:
with gr.Row(scale=1):
with gr.Column(elem_id="initial-popup-left-pane"):
gr.Markdown("GradioChat", elem_id="initial-popup-title")
gr.Markdown(
"Making the community's best AI chat models available to everyone."
)
with gr.Column(elem_id="initial-popup-right-pane"):
gr.Markdown(
"Chat UI is now open sourced on Hugging Face Hub"
)
gr.Markdown(
"check out the [β repository](https://huggingface.co/spaces/chansung/test-multi-conv)"
)
with gr.Column(scale=1):
gr.Markdown("Examples")
with gr.Row():
for example in examples:
ex_btns.append(gr.Button(example, elem_classes=["example-btn"]))
with gr.Column(elem_id="aux-btns-popup", visible=True):
with gr.Row():
stop = gr.Button("Stop", elem_classes=["aux-btn"], interactive=True)
regenerate = gr.Button("Regen", interactive=False, elem_classes=["aux-btn"])
clean = gr.Button("Clean", elem_classes=["aux-btn"])
with gr.Accordion("Context Inspector", elem_id="aux-viewer", open=False):
context_inspector = gr.Textbox(
"",
elem_id="aux-viewer-inspector",
label="",
lines=30,
max_lines=50,
)
chatbot = gr.Chatbot(elem_id='chatbot')
instruction_txtbox = gr.Textbox(
placeholder="Ask anything", label="",
elem_id="prompt-txt"
)
with gr.Accordion("Control Panel", open=False) as control_panel:
with gr.Column():
with gr.Column():
gr.Markdown("#### Global context")
with gr.Accordion("global context will persist during conversation, and it is placed at the top of the prompt", open=False):
global_context = gr.Textbox(
"global context",
lines=5,
max_lines=10,
interactive=True,
elem_id="global-context"
)
gr.Markdown("#### GenConfig for **response** text generation")
with gr.Row():
res_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
res_topp = gr.Slider(0.0, 2.0, 0, step=0.1, label="top_p", interactive=True)
res_topk = gr.Slider(20, 1000, 0, step=1, label="top_k", interactive=True)
res_rpen = gr.Slider(0.0, 2.0, 0, step=0.1, label="rep_penalty", interactive=True)
res_mnts = gr.Slider(64, 2048, 0, step=1, label="new_tokens", interactive=True)
res_beams = gr.Slider(1, 4, 0, step=1, label="beams")
res_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
res_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
res_eosid = gr.Number(value=0, visible=False, precision=0)
res_padid = gr.Number(value=0, visible=False, precision=0)
with gr.Column(visible=False):
gr.Markdown("#### GenConfig for **summary** text generation")
with gr.Row():
sum_temp = gr.Slider(0.0, 2.0, 0, step=0.1, label="temp", interactive=True)
sum_topp = gr.Slider(0.0, 2.0, 0, step=0.1, label="top_p", interactive=True)
sum_topk = gr.Slider(20, 1000, 0, step=1, label="top_k", interactive=True)
sum_rpen = gr.Slider(0.0, 2.0, 0, step=0.1, label="rep_penalty", interactive=True)
sum_mnts = gr.Slider(64, 2048, 0, step=1, label="new_tokens", interactive=True)
sum_beams = gr.Slider(1, 8, 0, step=1, label="beams", interactive=True)
sum_cache = gr.Radio([True, False], value=0, label="cache", interactive=True)
sum_sample = gr.Radio([True, False], value=0, label="sample", interactive=True)
sum_eosid = gr.Number(value=0, visible=False, precision=0)
sum_padid = gr.Number(value=0, visible=False, precision=0)
with gr.Column():
gr.Markdown("#### Context managements")
with gr.Row():
ctx_num_lconv = gr.Slider(2, 10, 3, step=1, label="number of recent talks to keep", interactive=True)
ctx_sum_prompt = gr.Textbox(
"summarize our conversations. what have we discussed about so far?",
label="design a prompt to summarize the conversations",
visible=False
)
gr.Markdown("""The control panel on the bottom side allows you to adjust three major hyper-parameters. First, you can set the global context of the conversation. Appropriate global context that is recommended by each model's authors is provided by default, but you can set it as you like. Second, you can adjust some of the hyper-parameters of the `GenerationConfig` to decide how you want the model to generate text. `Temperature`, `Top K`, and `New Max Tokens` are some of the available ones. Third, you can adjust the number of recent talks to keep track of. With bigger number, the model will see more of the past conversations.
Lastly, there is a hidden panel on the top right corner, and it will appear when you hover your mouse around it. When expanding the panel, it shows what the model actually sees. That is you can double check how the entire prompt is constructed and fed into the model at each conversation.
""")
btns = [
baize_7b, guanaco_7b #nous_hermes_13b, evolinstruct_vicuna_13b, guanaco_13b
# baize_7b, evolinstruct_vicuna_13b, guanaco_13b, nous_hermes_13b
# llama_deus_7b, koalpaca, evolinstruct_vicuna_13b, baize_7b, guanaco_33b,
]
for btn in btns:
btn.click(
move_to_second_view,
btn,
[
model_choice_view, model_review_view,
model_image, model_name, model_params, model_base, model_ckpt,
model_desc, model_vram, gen_config_path,
example_showcase1, example_showcase2, example_showcase3, example_showcase4,
progress_view
]
)
back_to_model_choose_btn.click(
move_to_first_view,
None,
[model_choice_view, model_review_view, progress_view2]
)
confirm_btn.click(
get_model_num,
[model_name],
[progress_view2, model_num]
).then(
move_to_third_view,
model_num,
[progress_view2, model_review_view, chat_view, chatbot, chat_state, global_context,
res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid]
)
for btn in channel_btns:
btn.click(
set_chatbot,
[btn, local_data, chat_state],
[chatbot, idx, example_block, regenerate]
).then(
None, btn, None,
_js=UPDATE_LEFT_BTNS_STATE
)
for btn in ex_btns:
btn.click(
set_example,
[btn],
[instruction_txtbox, example_block]
)
instruction_txtbox.submit(
lambda: [
gr.update(visible=False),
gr.update(interactive=True)
],
None,
[example_block, regenerate]
)
send_event = instruction_txtbox.submit(
central.chat_stream,
[idx, local_data, instruction_txtbox, chat_state, model_num,
global_context, ctx_num_lconv, ctx_sum_prompt,
res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid],
[instruction_txtbox, chatbot, context_inspector, local_data],
)
instruction_txtbox.submit(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
regenerate.click(
rollback_last,
[idx, local_data, chat_state],
[instruction_txtbox, chatbot, local_data, regenerate]
).then(
central.chat_stream,
[idx, local_data, instruction_txtbox, chat_state, model_num,
global_context, ctx_num_lconv, ctx_sum_prompt,
res_temp, res_topp, res_topk, res_rpen, res_mnts, res_beams, res_cache, res_sample, res_eosid, res_padid],
[instruction_txtbox, chatbot, context_inspector, local_data],
).then(
lambda: gr.update(interactive=True),
None,
regenerate
).then(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
stop.click(
None, None, None,
cancels=[send_event]
)
clean.click(
reset_chat,
[idx, local_data, chat_state],
[instruction_txtbox, chatbot, local_data, example_block, regenerate]
).then(
None, local_data, None,
_js="(v)=>{ setStorage('local_data',v) }"
)
chat_back_btn.click(
lambda: [gr.update(visible=False), gr.update(visible=True)],
None,
[chat_view, model_choice_view]
)
demo.load(
None,
inputs=None,
outputs=[chatbot, local_data],
_js=GET_LOCAL_STORAGE,
)
demo.queue(
concurrency_count=5,
max_size=256,
).launch(
debug=True,
)
|