LLaMA-7B / gen.py
chansung's picture
Update gen.py
e2ea425
raw
history blame
2.83 kB
from typing import Tuple
import os
import time
import json
from pathlib import Path
import torch
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama.generation import LLaMA
from llama.model import ModelArgs, Transformer
from llama.tokenizer import Tokenizer
from google.cloud import storage
bucket_name = os.environ.get("GCS_BUCKET")
llama_weight_path = "weights/llama"
tokenizer_weight_path = "weights/tokenizer"
def setup_model_parallel() -> Tuple[int, int]:
local_rank = int(os.environ.get("LOCAL_RANK", -1))
world_size = int(os.environ.get("WORLD_SIZE", -1))
torch.distributed.init_process_group("nccl")
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(1)
return local_rank, world_size
def download_pretrained_models(
ckpt_path: str,
tokenizer_path: str
):
os.makedirs(llama_weight_path)
os.makedirs(tokenizer_weight_path)
storage_client = storage.Client.create_anonymous_client()
bucket = storage_client.bucket(bucket_name)
blobs = bucket.list_blobs(prefix=f"{ckpt_path}/")
for blob in blobs:
filename = blob.name.split("/")[1]
blob.download_to_filename(f"{llama_weight_path}/{filename}")
blobs = bucket.list_blobs(prefix=f"{tokenizer_path}/")
for blob in blobs:
filename = blob.name.split("/")[1]
blob.download_to_filename(f"{tokenizer_weight_path}/{filename}")
def get_pretrained_models(
ckpt_path: str,
tokenizer_path: str,
local_rank: int,
world_size: int) -> LLaMA:
download_pretrained_models(ckpt_path, tokenizer_path)
start_time = time.time()
checkpoints = sorted(Path(llama_weight_path).glob("*.pth"))
llama_ckpt_path = checkpoints[local_rank]
print("Loading")
checkpoint = torch.load(llama_ckpt_path, map_location="cpu")
with open(Path(llama_weight_path) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(max_seq_len=512, max_batch_size=1, **params)
tokenizer = Tokenizer(model_path=f"{tokenizer_weight_path}/tokenizer.model")
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args).cuda().half()
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def get_output(
generator: LLaMA,
prompt: str,
temperature: float = 0.8,
top_p: float = 0.95):
prompts = [prompt]
results = generator.generate(prompts, max_gen_len=256, temperature=temperature, top_p=top_p)
return results