File size: 11,446 Bytes
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08d6ea
 
7e4123a
 
 
 
98ea61f
7e4123a
 
 
 
 
e1047f6
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08d6ea
7e4123a
e08d6ea
 
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08d6ea
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08d6ea
 
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cb5b4
98ea61f
7e4123a
 
 
 
 
 
 
4bad4d8
 
 
 
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e08d6ea
 
 
 
7e4123a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1047f6
 
 
 
e08d6ea
e1047f6
 
203dbb7
 
e08d6ea
7e4123a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import re
import copy
import json
import datasets
import gradio as gr
import pandas as pd

from pingpong import PingPong
from pingpong.context import CtxLastWindowStrategy

from gen.openllm import gen_text as open_llm_gen_text
from gen.gemini_chat import gen_text as gemini_gen_text
from gen.gemini_chat import init as gemini_init
from constants.context import DEFAULT_GLOBAL_CTX

from paper.download import get_papers_from_arxiv_ids

from init import (
    requested_arxiv_ids_df,
    date_dict,
    arxivid2data,
    dataset_repo_id,
    request_arxiv_repo_id,
    hf_token,
    gemini_api_key
)
from utils import push_to_hf_hub
gemini_init(gemini_api_key)

def get_paper_by_year(year):
    months = sorted(date_dict[year].keys())
    last_month = months[-1]
    
    days = sorted(date_dict[year][last_month].keys())
    last_day = days[-1]

    papers = list(set(
        [paper["title"] for paper in date_dict[year][last_month][last_day]]
    ))

    return (
        gr.Dropdown(choices=months, value=last_month),
        gr.Dropdown(choices=days, value=last_day),
        gr.Dropdown(choices=papers, value=papers[0])
    )

def get_paper_by_month(year, month):
    days = sorted(date_dict[year][month].keys())
    last_day = days[-1]

    papers = list(set(
        [paper["title"] for paper in date_dict[year][month][last_day]]
    ))

    return (
        gr.Dropdown(choices=days, value=last_day),
        gr.Dropdown(choices=papers, value=papers[0])
    )

def get_paper_by_day(year, month, day):
    papers = list(set(
        [paper["title"] for paper in date_dict[year][month][day]]
    ))
    return gr.Dropdown(choices=papers, value=papers[0])

# 2307.02040
def set_papers(year, month, day, title):
    title = title.split("]")[1].strip()

    papers = []
    for paper in date_dict[year][month][day]:
        papers.append(paper["title"])
        if paper["title"] == title:
            arxiv_id = paper["arxiv_id"]

    papers = list(set(papers))

    return (
        arxiv_id,
        gr.Dropdown(choices=papers, value=title),
        gr.Textbox("")
    )

def set_paper(year, month, day, paper_title):
    selected_paper = None
    for paper in date_dict[year][month][day]:
        if paper["title"] == paper_title:
            selected_paper = paper
            break

    return (
        selected_paper['arxiv_id'],
        gr.Markdown(f"# {selected_paper['title']}"), 
        gr.Markdown(
            "[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg?style=for-the-badge)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id']) + " "
            "[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id']
        ),
        gr.Markdown(selected_paper["summary"]),

        gr.Markdown(f"### πŸ™‹ {selected_paper['0_question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_depth_q:follow up question']}"),
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_breath_q:follow up question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}"),

        gr.Markdown(f"### πŸ™‹ {selected_paper['1_question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_depth_q:follow up question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_breath_q:follow up question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}"),

        gr.Markdown(f"### πŸ™‹ {selected_paper['2_question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_depth_q:follow up question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}"),
        gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_breath_q:follow up question']}"), 
        gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}"), 
        gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}"),
    )

def set_date(title):
    title = title.split("]")[1].strip()

    for _, (year, months) in enumerate(date_dict.items()):
        for _, (month, days) in enumerate(months.items()):
            for _, (day, papers) in enumerate(days.items()):
                for paper in papers:
                    if paper['title'] == title:
                        return (
                            gr.Dropdown(value=year),
                            gr.Dropdown(choices=sorted(months), value=month),
                            gr.Dropdown(choices=sorted(days), value=day),
                        )

def change_exp_type(exp_type):
    if exp_type == "ELI5":
        return (
            gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
            gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
            gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False),
        )
    else:
        return (
            gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
            gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
            gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True), gr.Markdown(visible=False), gr.Markdown(visible=True),
        )
    
def _filter_duplicate_arxiv_ids(arxiv_ids_to_be_added):
    ds1 = datasets.load_dataset(request_arxiv_repo_id)
    ds2 = datasets.load_dataset(dataset_repo_id)

    unique_arxiv_ids = set()

    for d in ds1['train']:
        arxiv_ids = d['Requested arXiv IDs']
        unique_arxiv_ids = set(list(unique_arxiv_ids) + arxiv_ids)

    if len(ds2) > 1:
        for d in ds2['train']:
            arxiv_id = d['arxiv_id']
            unique_arxiv_ids.add(arxiv_id)

    return list(set(arxiv_ids_to_be_added) - unique_arxiv_ids)

def _is_arxiv_id_valid(arxiv_id):
  pattern = r"^\d{4}\.\d{5}$" 
  return bool(re.match(pattern, arxiv_id))

def _get_valid_arxiv_ids(arxiv_ids_str):
    valid_arxiv_ids = []
    invalid_arxiv_ids = []
    
    for arxiv_id in arxiv_ids_str.split(","):
        arxiv_id = arxiv_id.strip()
        if _is_arxiv_id_valid(arxiv_id):
           valid_arxiv_ids.append(arxiv_id)
        else:
            invalid_arxiv_ids.append(arxiv_id)

    return valid_arxiv_ids, invalid_arxiv_ids

def add_arxiv_ids_to_queue(queue, arxiv_ids_str):
    valid_arxiv_ids, invalid_arxiv_ids = _get_valid_arxiv_ids(arxiv_ids_str)
    
    if len(invalid_arxiv_ids) > 0: 
        gr.Warning(f"found invalid arXiv ids as in {invalid_arxiv_ids}")

    if len(valid_arxiv_ids) > 0:
        valid_arxiv_ids = _filter_duplicate_arxiv_ids(valid_arxiv_ids)

        if len(valid_arxiv_ids) > 0:
            papers = get_papers_from_arxiv_ids(valid_arxiv_ids)
            valid_arxiv_ids = [[f"[{paper['paper']['id']}] {paper['title']}"] for paper in papers]

            gr.Warning(f"Processing [{valid_arxiv_ids}]. Other requested arXiv IDs not found on this list should be already processed or being processed...")
            valid_arxiv_ids = pd.DataFrame({'Requested arXiv IDs': valid_arxiv_ids})
            queue = pd.concat([queue, valid_arxiv_ids])
            queue.reset_index(drop=True)

            ds = datasets.Dataset.from_pandas(valid_arxiv_ids)
            push_to_hf_hub(ds, request_arxiv_repo_id, hf_token)
        else:
            gr.Warning(f"All requested arXiv IDs are already processed or being processed...")
    else:
        gr.Warning(f"No valid arXiv IDs found...")

    return (
        queue, gr.Textbox("")
    )  

# Chat

def before_chat_begin():
    return (
        gr.Button(interactive=False),
        gr.Button(interactive=False),
        gr.Button(interactive=False)
    )

def _build_prompts(ppmanager, global_context, win_size=3):
    dummy_ppm = copy.deepcopy(ppmanager)
    dummy_ppm.ctx = global_context
    lws = CtxLastWindowStrategy(win_size)
    return lws(dummy_ppm)

async def chat_stream(idx, local_data, user_prompt, chat_state, ctx_num_lconv=3):
    paper = arxivid2data[idx]['paper']
    ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
    ppm.add_pingpong(
        PingPong(
            user_prompt,
            ""
        )
    )
    prompt = _build_prompts(ppm, DEFAULT_GLOBAL_CTX % paper["full_text"].replace("\n", " ")[:30000], ctx_num_lconv)

    # async for result in open_llm_gen_text(
    #     prompt, 
    #     hf_model='meta-llama/Llama-2-70b-chat-hf', hf_token=hf_token,
    #     parameters={
    #         'max_new_tokens': 4906,
    #         'do_sample': True,
    #         'return_full_text': False,
    #         'temperature': 0.7,
    #         'top_k': 10,
    #         'repetition_penalty': 1.2
    #     }
    # ):
    try:
        async for result in gemini_gen_text(prompt):
            ppm.append_pong(result)
            yield "", ppm.build_uis(), str(ppm), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)

        yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
    except Exception as e:
        gr.Warning(str(e))
        ppm.replace_last_pong("Gemini refused to answer. This happens becase there were some safety issues in the answer.")
        yield "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)        

def chat_reset(local_data, chat_state):
    ppm = chat_state["ppmanager_type"].from_json(json.dumps(local_data))
    ppm.pingpongs = []

    return "", ppm.build_uis(), str(ppm), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)