Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import datasets | |
import pandas as pd | |
from huggingface_hub import HfApi | |
from utils import push_to_hf_hub | |
from paper.download import download_pdf_from_arxiv | |
from paper.download import get_papers_from_arxiv_ids | |
from paper.parser import extract_text_and_figures | |
from gen.gemini import get_basic_qa, get_deep_qa | |
def _filter_function(example, ids): | |
ids_e = example['Requested arXiv IDs'] | |
for iid in ids: | |
if iid in ids_e: | |
ids_e.remove(iid) | |
example['Requested arXiv IDs'] = ids_e | |
print(example) | |
return example | |
def process_arxiv_ids(gemini_api, hf_repo_id, req_hf_repo_id, hf_token, restart_repo_id, how_many=10): | |
arxiv_ids = [] | |
ds1 = datasets.load_dataset(req_hf_repo_id) | |
for d in ds1['train']: | |
req_arxiv_ids = d['Requested arXiv IDs'] | |
if len(req_arxiv_ids) > 0 and req_arxiv_ids[0] != "top": | |
arxiv_ids = arxiv_ids + req_arxiv_ids | |
arxiv_ids = arxiv_ids[:how_many] | |
if arxiv_ids is not None and len(arxiv_ids) > 0: | |
print(f"1. Get metadata for the papers [{arxiv_ids}]") | |
papers = get_papers_from_arxiv_ids(arxiv_ids) | |
print("...DONE") | |
print("2. Generating QAs for the paper") | |
for paper in papers: | |
try: | |
title = paper['title'] | |
target_date = paper['target_date'] | |
abstract = paper['paper']['summary'] | |
arxiv_id = paper['paper']['id'] | |
authors = paper['paper']['authors'] | |
print(f"...PROCESSING ON[{arxiv_id}, {title}]") | |
print(f"......Downloading the paper PDF") | |
filename = download_pdf_from_arxiv(arxiv_id) | |
print(f"......DONE") | |
print(f"......Extracting text and figures") | |
texts, figures = extract_text_and_figures(filename) | |
text =' '.join(texts) | |
print(f"......DONE") | |
print(f"......Generating the seed(basic) QAs") | |
qnas = get_basic_qa(text, gemini_api_key=gemini_api, trucate=30000) | |
qnas['title'] = title | |
qnas['abstract'] = abstract | |
qnas['authors'] = ','.join(authors) | |
qnas['arxiv_id'] = arxiv_id | |
qnas['target_date'] = target_date | |
qnas['full_text'] = text | |
print(f"......DONE") | |
print(f"......Generating the follow-up QAs") | |
qnas = get_deep_qa(text, qnas, gemini_api_key=gemini_api, trucate=30000) | |
del qnas["qna"] | |
print(f"......DONE") | |
print(f"......Exporting to HF Dataset repo at [{hf_repo_id}]") | |
df = pd.DataFrame([qnas]) | |
ds = datasets.Dataset.from_pandas(df) | |
ds = ds.cast_column("target_date", datasets.features.Value("timestamp[s]")) | |
push_to_hf_hub(ds, hf_repo_id, hf_token) | |
print(f"......DONE") | |
print(f"......Updating request arXiv HF Dataset repo at [{req_hf_repo_id}]") | |
ds1 = ds1['train'].map( | |
lambda example: _filter_function(example, [arxiv_id]) | |
).filter( | |
lambda example: len(example['Requested arXiv IDs']) > 0 | |
) | |
ds1.push_to_hub(req_hf_repo_id, token=hf_token) | |
print(f"......DONE") | |
except Exception as e: | |
print(f".......failed due to exception {e}") | |
continue | |
HfApi(token=hf_token).restart_space( | |
repo_id=restart_repo_id, token=hf_token | |
) |