paper_qa / app.py
chansung's picture
Update app.py
d5c7435 verified
raw
history blame
20.8 kB
import gradio as gr
from init import (
get_secrets, initialize_data,
update_dataframe, initialize_repos
)
from gen.openllm import GradioMistralChatPPManager
from gen.gemini_chat import GradioGeminiChatPPManager
from constants.js import (
UPDATE_SEARCH_RESULTS, OPEN_CHAT_IF,
CLOSE_CHAT_IF, UPDATE_CHAT_HISTORY
)
from datetime import datetime, timedelta
from background import process_arxiv_ids
from apscheduler.schedulers.background import BackgroundScheduler
gemini_api_key, hf_token, dataset_repo_id, request_arxiv_repo_id, restart_repo_id = get_secrets()
initialize_repos(dataset_repo_id, request_arxiv_repo_id, hf_token)
titles, date_dict, requested_arxiv_ids_df, arxivid2data = initialize_data(dataset_repo_id, request_arxiv_repo_id)
from ui import (
get_paper_by_year, get_paper_by_month, get_paper_by_day,
set_papers, set_paper, set_date, change_exp_type, add_arxiv_ids_to_queue,
before_chat_begin, chat_stream, chat_reset
)
if len(date_dict.keys()) > 0:
sorted_year = sorted(date_dict.keys())
last_year = sorted_year[-1] if len(sorted_year) > 0 else ""
sorted_month = sorted(date_dict[last_year].keys())
last_month = sorted_month[-1] if len(sorted_year) > 0 else ""
sorted_day = sorted(date_dict[last_year][last_month].keys())
last_day = sorted_day[-1] if len(sorted_year) > 0 else ""
last_papers = date_dict[last_year][last_month][last_day] if len(sorted_year) > 0 else [""]
selected_paper = last_papers[0]
visible = True
else:
sorted_year = ["2024"]
last_year = sorted_year[-1]
sorted_month = ["01"]
last_month = sorted_month[-1]
sorted_day = ["01"]
last_day = sorted_day[-1]
selected_paper = {}
selected_paper["title"] = ""
selected_paper["summary"] = ""
selected_paper["arxiv_id"] = ""
selected_paper["target_date"] = "2024-01-01"
for idx in range(10):
selected_paper[f"{idx}_question"] = ""
selected_paper[f"{idx}_answers:eli5"] = ""
selected_paper[f"{idx}_answers:expert"] = ""
selected_paper[f"{idx}_additional_depth_q:follow up question"] = ""
selected_paper[f"{idx}_additional_depth_q:answers:eli5"] = ""
selected_paper[f"{idx}_additional_depth_q:answers:expert"] = ""
selected_paper[f"{idx}_additional_breath_q:follow up question"] = ""
selected_paper[f"{idx}_additional_breath_q:answers:eli5"] = ""
selected_paper[f"{idx}_additional_breath_q:answers:expert"] = ""
last_papers = [selected_paper]
visible = False
with gr.Blocks(css="constants/styles.css", theme=gr.themes.Soft()) as demo:
cur_arxiv_id = gr.Textbox(selected_paper['arxiv_id'], visible=False)
local_data = gr.JSON({}, visible=False)
chat_state = gr.State({
"ppmanager_type": GradioGeminiChatPPManager # GradioMistralChatPPManager # GradioLLaMA2ChatPPManager
})
with gr.Column(elem_id="chatbot-back"):
with gr.Column(elem_id="chatbot", elem_classes=["hover-opacity"]):
close = gr.Button("𝕏", elem_id="chatbot-right-button") #elem_id="chatbot-right-button")
chatbot = gr.Chatbot(
label="Gemini 1.0 Pro", show_label=True,
show_copy_button=True, show_share_button=True,
visible=True, elem_id="chatbot-inside"
)
with gr.Row(elem_id="chatbot-bottm"):
reset = gr.Button("πŸ—‘οΈ Reset")
regen = gr.Button("πŸ”„ Regenerate", visible=False)
prompt_txtbox = gr.Textbox(placeholder="Ask anything.....", elem_id="chatbot-txtbox", elem_classes=["textbox-no-label"])
gr.Markdown("# Let's explore papers with auto generated Q&As")
with gr.Column(elem_id="control-panel", elem_classes=["group"], visible=visible):
with gr.Column():
with gr.Row():
year_dd = gr.Dropdown(sorted_year, value=last_year, label="Year", interactive=True, filterable=False)
month_dd = gr.Dropdown(sorted_month, value=last_month, label="Month", interactive=True, filterable=False)
day_dd = gr.Dropdown(sorted_day, value=last_day, label="Day", interactive=True, filterable=False)
papers_dd = gr.Dropdown(
list(set([paper["title"] for paper in last_papers])),
value=selected_paper["title"],
label="Select paper title",
interactive=True,
filterable=False
)
with gr.Column(elem_classes=["no-gap"]):
search_in = gr.Textbox("", placeholder="Enter keywords to search...", elem_classes=["textbox-no-label"])
search_r1 = gr.Button(visible=False, elem_id="search_r1", elem_classes=["no-radius"])
search_r2 = gr.Button(visible=False, elem_id="search_r2", elem_classes=["no-radius"])
search_r3 = gr.Button(visible=False, elem_id="search_r3", elem_classes=["no-radius"])
search_r4 = gr.Button(visible=False, elem_id="search_r4", elem_classes=["no-radius"])
search_r5 = gr.Button(visible=False, elem_id="search_r5", elem_classes=["no-radius"])
search_r6 = gr.Button(visible=False, elem_id="search_r6", elem_classes=["no-radius"])
search_r7 = gr.Button(visible=False, elem_id="search_r7", elem_classes=["no-radius"])
search_r8 = gr.Button(visible=False, elem_id="search_r8", elem_classes=["no-radius"])
search_r9 = gr.Button(visible=False, elem_id="search_r9", elem_classes=["no-radius"])
search_r10 = gr.Button(visible=False, elem_id="search_r10", elem_classes=["no-radius"])
with gr.Column(scale=7, visible=visible):
title = gr.Markdown(f"# {selected_paper['title']}", elem_classes=["markdown-center"])
# with gr.Row():
with gr.Row():
arxiv_link = gr.Markdown(
"[![arXiv](https://img.shields.io/badge/arXiv-%s-b31b1b.svg?style=for-the-badge)](https://arxiv.org/abs/%s)" % (selected_paper['arxiv_id'], selected_paper['arxiv_id']) + " "
"[![Paper page](https://huggingface.co/datasets/huggingface/badges/resolve/main/paper-page-lg.svg)](https://huggingface.co/papers/%s)" % selected_paper['arxiv_id'] + " ",
elem_id="link-md",
)
chat_button = gr.Button("Chat about any custom questions", interactive=True, elem_id="chat-button")
summary = gr.Markdown(f"{selected_paper['summary']}", elem_classes=["small-font"])
with gr.Column(elem_id="qna_block", visible=True):
with gr.Row():
with gr.Column(scale=7):
gr.Markdown("## Auto generated Questions & Answers")
exp_type = gr.Radio(choices=["ELI5", "Technical"], value="ELI5", elem_classes=["exp-type"], scale=3)
# 1
with gr.Column(elem_classes=["group"], visible=True) as q_0:
basic_q_0 = gr.Markdown(f"### πŸ™‹ {selected_paper['0_question']}")
basic_q_eli5_0 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_0 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_0_0:
depth_q_0 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_depth_q:follow up question']}")
depth_q_eli5_0 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_0 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_0_1:
breath_q_0 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['0_additional_breath_q:follow up question']}")
breath_q_eli5_0 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['0_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_0 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['0_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
# 2
with gr.Column(elem_classes=["group"], visible=True) as q_1:
basic_q_1 = gr.Markdown(f"### πŸ™‹ {selected_paper['1_question']}")
basic_q_eli5_1 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_1 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_1_0:
depth_q_1 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_depth_q:follow up question']}")
depth_q_eli5_1 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_1 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_1_1:
breath_q_1 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['1_additional_breath_q:follow up question']}")
breath_q_eli5_1 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['1_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_1 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['1_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
# 3
with gr.Column(elem_classes=["group"], visible=True) as q_2:
basic_q_2 = gr.Markdown(f"### πŸ™‹ {selected_paper['2_question']}")
basic_q_eli5_2 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_answers:eli5']}", elem_classes=["small-font"])
basic_q_expert_2 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #1", open=False, elem_classes=["accordion"]) as aq_2_0:
depth_q_2 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_depth_q:follow up question']}")
depth_q_eli5_2 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_depth_q:answers:eli5']}", elem_classes=["small-font"])
depth_q_expert_2 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_depth_q:answers:expert']}", visible=False, elem_classes=["small-font"])
with gr.Accordion("Additional question #2", open=False, elem_classes=["accordion"]) as aq_2_1:
breath_q_2 = gr.Markdown(f"### πŸ™‹πŸ™‹ {selected_paper['2_additional_breath_q:follow up question']}")
breath_q_eli5_2 = gr.Markdown(f"β†ͺ **(ELI5)** {selected_paper['2_additional_breath_q:answers:eli5']}", elem_classes=["small-font"])
breath_q_expert_2 = gr.Markdown(f"β†ͺ **(Technical)** {selected_paper['2_additional_breath_q:answers:expert']}", visible=False, elem_classes=["small-font"])
gr.Markdown("## Request any arXiv ids")
arxiv_queue = gr.Dataframe(
headers=["Requested arXiv IDs"], col_count=(1, "fixed"),
value=update_dataframe,
every=180,
datatype=["str"],
interactive=False,
)
arxiv_id_enter = gr.Textbox(placeholder="Enter comma separated arXiv IDs...", elem_classes=["textbox-no-label"])
arxiv_id_enter.submit(
add_arxiv_ids_to_queue,
[arxiv_queue, arxiv_id_enter],
[arxiv_queue, arxiv_id_enter],
concurrency_limit=20,
)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.Markdown("The target papers are collected from [Hugging Face πŸ€— Daily Papers](https://huggingface.co/papers) on a daily basis. "
"The entire data is generated by [Google's Gemini 1.0](https://deepmind.google/technologies/gemini/) Pro. "
"If you are curious how it is done, visit the [Auto Paper Q&A Generation project repository](https://github.com/deep-diver/auto-paper-analysis) "
"Also, the generated dataset is hosted on Hugging Face πŸ€— Dataset repository as well([Link](https://huggingface.co/datasets/chansung/auto-paper-qa2)). ")
search_r1.click(set_date, search_r1, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r1],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r2.click(set_date, search_r2, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r2],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r3.click(set_date, search_r3, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r3],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r4.click(set_date, search_r4, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r4],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r5.click(set_date, search_r5, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r5],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r6.click(set_date, search_r6, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r6],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r7.click(set_date, search_r7, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r7],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r8.click(set_date, search_r8, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r8],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r9.click(set_date, search_r9, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r9],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
search_r10.click(set_date, search_r10, [year_dd, month_dd, day_dd]).then(
set_papers,
inputs=[year_dd, month_dd, day_dd, search_r10],
outputs=[cur_arxiv_id, papers_dd, search_in],
concurrency_limit=20,
)
year_dd.input(get_paper_by_year, inputs=[year_dd], outputs=[month_dd, day_dd, papers_dd]).then(
set_paper, [year_dd, month_dd, day_dd, papers_dd],
[
cur_arxiv_id,
title, arxiv_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
],
concurrency_limit=20,
)
month_dd.input(get_paper_by_month, inputs=[year_dd, month_dd], outputs=[day_dd, papers_dd]).then(
set_paper, [year_dd, month_dd, day_dd, papers_dd],
[
cur_arxiv_id,
title, arxiv_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
],
concurrency_limit=20,
)
day_dd.input(get_paper_by_day, inputs=[year_dd, month_dd, day_dd], outputs=[papers_dd]).then(
set_paper, [year_dd, month_dd, day_dd, papers_dd],
[
cur_arxiv_id,
title, arxiv_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
],
concurrency_limit=20,
)
papers_dd.change(set_paper, [year_dd, month_dd, day_dd, papers_dd],
[
cur_arxiv_id,
title, arxiv_link, summary,
basic_q_0, basic_q_eli5_0, basic_q_expert_0,
depth_q_0, depth_q_eli5_0, depth_q_expert_0,
breath_q_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_1, basic_q_eli5_1, basic_q_expert_1,
depth_q_1, depth_q_eli5_1, depth_q_expert_1,
breath_q_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_2, basic_q_eli5_2, basic_q_expert_2,
depth_q_2, depth_q_eli5_2, depth_q_expert_2,
breath_q_2, breath_q_eli5_2, breath_q_expert_2
],
concurrency_limit=20,
)
search_in.change(
inputs=[search_in],
outputs=[
search_r1, search_r2, search_r3, search_r4, search_r5,
search_r6, search_r7, search_r8, search_r9, search_r10
],
js=UPDATE_SEARCH_RESULTS % str(list(titles)),
fn=None
)
exp_type.select(
change_exp_type,
exp_type,
[
basic_q_eli5_0, basic_q_expert_0, depth_q_eli5_0, depth_q_expert_0, breath_q_eli5_0, breath_q_expert_0,
basic_q_eli5_1, basic_q_expert_1, depth_q_eli5_1, depth_q_expert_1, breath_q_eli5_1, breath_q_expert_1,
basic_q_eli5_2, basic_q_expert_2, depth_q_eli5_2, depth_q_expert_2, breath_q_eli5_2, breath_q_expert_2
],
concurrency_limit=20,
)
chat_button.click(None, [cur_arxiv_id], [local_data, chatbot], js=OPEN_CHAT_IF)
chat_event1 = prompt_txtbox.submit(
before_chat_begin, None, [reset, regen],
concurrency_limit=20,
)
chat_event2 = chat_event1.then(
chat_stream,
[cur_arxiv_id, local_data, prompt_txtbox, chat_state],
[prompt_txtbox, chatbot, local_data, reset, regen],
concurrency_limit=20, queue=True
)
chat_event2.then(
None, [cur_arxiv_id, local_data], None,
js=UPDATE_CHAT_HISTORY
)
close.click(
None, None, None, cancels=[chat_event1, chat_event2]
).then(
None, None, None,js=CLOSE_CHAT_IF
)
reset.click(
before_chat_begin, None, [reset, regen],
concurrency_limit=20,
).then(
chat_reset,
[local_data, chat_state],
[prompt_txtbox, chatbot, local_data, reset, regen],
concurrency_limit=20,
).then(
None, [cur_arxiv_id, local_data], None,
js=UPDATE_CHAT_HISTORY
)
# demo.load(lambda: update_dataframe(request_arxiv_repo_id), None, arxiv_queue, every=180)
# demo.load(None, None, [chatbot, local_data], js=GET_LOCAL_STORAGE % idx.value)
start_date = datetime.now() + timedelta(minutes=1)
scheduler = BackgroundScheduler()
scheduler.add_job(
process_arxiv_ids,
trigger='interval',
seconds=300,
args=[
gemini_api_key,
dataset_repo_id,
request_arxiv_repo_id,
hf_token,
restart_repo_id
],
start_date=start_date
)
scheduler.start()
demo.queue(
default_concurrency_limit=20,
max_size=256
).launch(
share=True, debug=True
)