paper_qa / init.py
chansung's picture
Update init.py
1a6a6d6 verified
raw
history blame
4.12 kB
import os
import copy
import datasets
import pandas as pd
from datasets import Dataset
from collections import defaultdict
from datetime import datetime, timedelta
from background import process_arxiv_ids
from utils import create_hf_hub
from apscheduler.schedulers.background import BackgroundScheduler
def _count_nans(row):
count = 0
for _, (k, v) in enumerate(row.items()):
if v is None:
count = count + 1
return count
def _initialize_requested_arxiv_ids(request_ds):
requested_arxiv_ids = []
for request_d in request_ds['train']:
arxiv_ids = request_d['Requested arXiv IDs']
requested_arxiv_ids = requested_arxiv_ids + arxiv_ids
requested_arxiv_ids_df = pd.DataFrame({'Requested arXiv IDs': requested_arxiv_ids})
return requested_arxiv_ids_df
def _initialize_paper_info(source_ds):
title2qna, date2qna = {}, {}
date_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
arxivid2data = {}
count = 0
if len(source_ds["train"]) > 1:
for data in source_ds["train"]:
if data["title"] != "dummy":
date = data["target_date"].strftime("%Y-%m-%d")
arxiv_id = data["arxiv_id"]
if date in date2qna:
papers = copy.deepcopy(date2qna[date])
for paper in papers:
if paper["title"] == data["title"]:
if _count_nans(paper) > _count_nans(data):
date2qna[date].remove(paper)
date2qna[date].append(data)
del papers
else:
date2qna[date] = [data]
for date in date2qna:
year, month, day = date.split("-")
papers = date2qna[date]
for paper in papers:
title2qna[paper["title"]] = paper
arxivid2data[paper['arxiv_id']] = {"idx": count, "paper": paper}
date_dict[year][month][day].append(paper)
titles = [f"[{v['arxiv_id']}] {k}" for k, v in title2qna.items()]
return titles, date_dict, arxivid2data
else:
return [], {}, {}
def initialize_data(source_data_repo_id, request_data_repo_id):
global date_dict, arxivid2data
global requested_arxiv_ids_df
source_ds = datasets.load_dataset(source_data_repo_id)
request_ds = datasets.load_dataset(request_data_repo_id)
titles, date_dict, arxivid2data = _initialize_paper_info(source_ds)
requested_arxiv_ids_df = _initialize_requested_arxiv_ids(request_ds)
return (
titles, date_dict, requested_arxiv_ids_df, arxivid2data
)
def update_dataframe():
global request_arxiv_repo_id
request_ds = datasets.load_dataset(request_arxiv_repo_id)
return _initialize_requested_arxiv_ids(request_ds)
def initialize_repos(
source_data_repo_id, request_data_repo_id, hf_token
):
if create_hf_hub(source_data_repo_id, hf_token) is False:
print(f"{source_data_repo_id} repository already exists")
else:
dummy_row = {"title": ["dummy"]}
ds = Dataset.from_dict(dummy_row)
ds.push_to_hub(source_data_repo_id, token=hf_token)
if create_hf_hub(request_data_repo_id, hf_token) is False:
print(f"{request_data_repo_id} repository already exists")
else:
df = pd.DataFrame(data={"Requested arXiv IDs": [["top"]]})
ds = Dataset.from_pandas(df)
ds.push_to_hub(request_data_repo_id, token=hf_token)
def get_secrets():
global gemini_api_key
global hf_token
global request_arxiv_repo_id
global dataset_repo_id
gemini_api_key = os.getenv("GEMINI_API_KEY")
hf_token = os.getenv("HF_TOKEN")
dataset_repo_id = os.getenv("SOURCE_DATA_REPO_ID")
request_arxiv_repo_id = os.getenv("REQUEST_DATA_REPO_ID")
restart_repo_id = os.getenv("RESTART_TARGET_SPACE_REPO_ID", "chansung/paper_qa")
return (
gemini_api_key,
hf_token,
dataset_repo_id,
request_arxiv_repo_id,
restart_repo_id
)