Spaces:
Build error
Build error
File size: 15,800 Bytes
a1ca2de 3332aa4 a1ca2de 936d161 a1ca2de 936d161 3332aa4 a1ca2de 936d161 a1ca2de 936d161 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 936d161 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 3332aa4 a1ca2de 936d161 a1ca2de ceefdf5 a1ca2de 936d161 a1ca2de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
from typing import Literal
from pathlib import Path
import uuid
import json
import re
import asyncio
import toml
import torch
from compel import Compel
from diffusers import (
DiffusionPipeline,
StableDiffusionPipeline,
AutoencoderKL,
DPMSolverMultistepScheduler,
DDPMScheduler,
DPMSolverSinglestepScheduler,
DPMSolverSDEScheduler,
DEISMultistepScheduler,
)
from .utils import set_all_seeds
from modules.llms import get_llm_factory
_gpus = 0
class ImageMaker:
# TODO: DocString...
"""Class for generating images from prompts."""
__ratio = {'3:2': [768, 512],
'4:3': [680, 512],
'16:9': [912, 512],
'1:1': [512, 512],
'9:16': [512, 912],
'3:4': [512, 680],
'2:3': [512, 768]}
__allocated = False
def __init__(self, model_base: str,
clip_skip: int = 2,
sampling: Literal['sde-dpmsolver++'] = 'sde-dpmsolver++',
vae: str = None,
safety: bool = True,
variant: str = None,
from_hf: bool = False,
device: str = None) -> None:
"""Initialize the ImageMaker class.
Args:
model_base (str): Filename of the model base.
clip_skip (int, optional): Number of layers to skip in the clip model. Defaults to 2.
sampling (Literal['sde-dpmsolver++'], optional): Sampling method. Defaults to 'sde-dpmsolver++'.
vae (str, optional): Filename of the VAE model. Defaults to None.
safety (bool, optional): Whether to use the safety checker. Defaults to True.
variant (str, optional): Variant of the model. Defaults to None.
from_hf (bool, optional): Whether to load the model from HuggingFace. Defaults to False.
llm_type (str, optional): Type of the LLM. Defaults to 'PaLM'.
device (str, optional): Device to use for the model. Defaults to None.
"""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if not device else device
self.__model_base = model_base
self.__clip_skip = clip_skip
self.__sampling = sampling
self.__vae = vae
self.__safety = safety
self.__variant = variant
self.__from_hf = from_hf
print("Loading the Stable Diffusion model into memory...")
if not self.__from_hf:
# from file
self.__sd_model = StableDiffusionPipeline.from_single_file(self.model_base,
torch_dtype=torch.float16,
use_safetensors=True,
)
# Clip Skip
self.__sd_model.text_encoder.text_model.encoder.layers = self.__sd_model.text_encoder.text_model.encoder.layers[:12 - (self.clip_skip - 1)]
# Sampling method
if True: # TODO: Sampling method :: self.sampling == 'sde-dpmsolver++'
scheduler = DPMSolverMultistepScheduler.from_config(self.__sd_model.scheduler.config)
scheduler.config.algorithm_type = 'sde-dpmsolver++'
self.__sd_model.scheduler = scheduler
# VAE
if self.vae:
vae_model = AutoencoderKL.from_single_file(self.vae, use_safetensors=True)
self.__sd_model.vae = vae_model.to(dtype=torch.float16)
# Safety checker
if not self.safety:
self.__sd_model.safety_checker = None
self.__sd_model.requires_safety_checker = False
else:
# from huggingface
self.__sd_model = StableDiffusionPipeline.from_pretrained(self.model_base,
variant=self.__variant,
use_safetensors=True)
print(f"Loaded model to {self.device}")
self.__sd_model = self.__sd_model.to(self.device)
# Text Encoder using Compel
self.__compel_proc = Compel(tokenizer=self.__sd_model.tokenizer, text_encoder=self.__sd_model.text_encoder, truncate_long_prompts=False)
output_dir = Path('.') / 'outputs'
if not output_dir.exists():
output_dir.mkdir(parents=True, exist_ok=True)
elif output_dir.is_file():
assert False, f"A file with the same name as the desired directory ('{str(output_dir)}') already exists."
def text2image(self,
prompt: str, neg_prompt: str = None,
ratio: Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'] = '1:1',
step: int = 28,
cfg: float = 4.5,
seed: int = None) -> str:
"""Generate an image from the prompt.
Args:
prompt (str): Prompt for the image generation.
neg_prompt (str, optional): Negative prompt for the image generation. Defaults to None.
ratio (Literal['3:2', '4:3', '16:9', '1:1', '9:16', '3:4', '2:3'], optional): Ratio of the generated image. Defaults to '1:1'.
step (int, optional): Number of iterations for the diffusion. Defaults to 20.
cfg (float, optional): Configuration for the diffusion. Defaults to 7.5.
seed (int, optional): Seed for the random number generator. Defaults to None.
Returns:
str: Path to the generated image.
"""
output_filename = Path('.') / 'outputs' / str(uuid.uuid4())
if not seed or seed == -1:
seed = torch.randint(0, 2**32 - 1, (1,)).item()
set_all_seeds(seed)
width, height = self.__ratio[ratio]
prompt_embeds, negative_prompt_embeds = self.__get_pipeline_embeds(prompt, neg_prompt or self.neg_prompt)
# Generate the image
result = self.__sd_model(prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
guidance_scale=cfg,
num_inference_steps=step,
width=width,
height=height,
)
if self.__safety and result.nsfw_content_detected[0]:
print("=== NSFW Content Detected ===")
raise ValueError("Potential NSFW content was detected in one or more images.")
img = result.images[0]
img.save(str(output_filename.with_suffix('.png')))
return str(output_filename.with_suffix('.png'))
def generate_character_prompts(self, character_name: str, age: str, job: str,
keywords: list[str] = None,
creative_mode: Literal['sd character', 'cartoon', 'realistic'] = 'cartoon',
llm_type: str = 'PaLM',
) -> tuple[str, str]:
"""Generate positive and negative prompts for a character based on given attributes.
Args:
character_name (str): Character's name.
age (str): Age of the character.
job (str): The profession or job of the character.
keywords (list[str]): List of descriptive words for the character.
creative_mode (Literal['sd character', 'cartoon', 'realistic']): Creative mode for the character.
llm_type (str, optional): Type of the LLM. Defaults to 'PaLM'.
Returns:
tuple[str, str]: A tuple of positive and negative prompts.
"""
factory = get_llm_factory(llm_type)
prompt_manager = factory.create_prompt_manager()
llm_service = factory.create_llm_service()
positive = "" # add static prompt for character if needed (e.g. "chibi, cute, anime")
negative = prompt_manager.prompts['image_gen']['neg_prompt']
# Generate prompts with LLM
t = prompt_manager.prompts['image_gen']['character']['gen_prompt']
q = prompt_manager.prompts['image_gen']['character']['query']
query_string = t.format(input=q.format(character_name=character_name,
job=job,
age=age,
keywords=', '.join(keywords) if keywords else 'Nothing'))
try:
response, response_txt = asyncio.run(asyncio.wait_for(
llm_service.gen_text(query_string, mode="text", use_filter=False),
timeout=10)
)
except asyncio.TimeoutError:
raise TimeoutError("The response time for PaLM API exceeded the limit.")
except:
raise Exception("PaLM API is not available.")
try:
res_json = json.loads(response_txt)
positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
gender_keywords = ['1man', '1woman', '1boy', '1girl', '1male', '1female', '1gentleman', '1lady']
positive += ', '.join([w if w not in gender_keywords else w + '+++' for w in res_json['descriptors']])
positive = f'{job.lower()}+'.join(positive.split(job.lower()))
except:
print("=== PaLM Response ===")
print(response.filters)
print(response_txt)
print("=== PaLM Response ===")
raise ValueError("The response from PaLM API is not in the expected format.")
return (positive.lower(), negative.lower())
def generate_background_prompts(self, genre:str, place:str, mood:str,
title:str, chapter_title:str, chapter_plot:str,
llm_type: str = 'PaLM',
) -> tuple[str, str]:
"""Generate positive and negative prompts for a background image based on given attributes.
Args:
genre (str): Genre of the story.
place (str): Place of the story.
mood (str): Mood of the story.
title (str): Title of the story.
chapter_title (str): Title of the chapter.
chapter_plot (str): Plot of the chapter.
llm_type (str, optional): Type of the LLM. Defaults to 'PaLM'.
Returns:
tuple[str, str]: A tuple of positive and negative prompts.
"""
factory = get_llm_factory(llm_type)
prompt_manager = factory.create_prompt_manager()
llm_service = factory.create_llm_service()
positive = "painting+++, anime+, catoon, watercolor, wallpaper, text---" # add static prompt for background if needed (e.g. "chibi, cute, anime")
negative = "realistic, human, character, people, photograph, 3d render, blurry, grayscale, oversaturated, " + prompt_manager.prompts['image_gen']['neg_prompt']
# Generate prompts with PaLM
t = prompt_manager.prompts['image_gen']['background']['gen_prompt']
q = prompt_manager.prompts['image_gen']['background']['query']
query_string = t.format(input=q.format(genre=genre,
place=place,
mood=mood,
title=title,
chapter_title=chapter_title,
chapter_plot=chapter_plot))
try:
response, response_txt = asyncio.run(asyncio.wait_for(
llm_service.gen_text(query_string, mode="text", use_filter=False),
timeout=10)
)
except asyncio.TimeoutError:
raise TimeoutError("The response time for PaLM API exceeded the limit.")
except:
raise Exception("PaLM API is not available.")
try:
res_json = json.loads(response_txt)
positive = (res_json['primary_sentence'] if not positive else f"{positive}, {res_json['primary_sentence']}") + ", "
positive += ', '.join(res_json['descriptors'])
except:
print("=== PaLM Response ===")
print(response.filters)
print(response_txt)
print("=== PaLM Response ===")
raise ValueError("The response from PaLM API is not in the expected format.")
return (positive.lower(), negative.lower())
def __get_pipeline_embeds(self, prompt:str, negative_prompt:str) -> tuple[torch.Tensor, torch.Tensor]:
"""
Get pipeline embeds for prompts bigger than the maxlength of the pipeline
Args:
prompt (str): Prompt for the image generation.
neg_prompt (str): Negative prompt for the image generation.
Returns:
tuple[torch.Tensor, torch.Tensor]: A tuple of positive and negative prompt embeds.
"""
conditioning = self.__compel_proc.build_conditioning_tensor(prompt)
negative_conditioning = self.__compel_proc.build_conditioning_tensor(negative_prompt)
return self.__compel_proc.pad_conditioning_tensors_to_same_length([conditioning, negative_conditioning])
def push_to_hub(self, repo_id:str, commit_message:str=None, token:str=None, variant:str=None):
self.__sd_model.push_to_hub(repo_id, commit_message=commit_message, token=token, variant=variant)
@property
def model_base(self):
"""Model base
Returns:
str: The model base (read-only)
"""
return self.__model_base
@property
def clip_skip(self):
"""Clip Skip
Returns:
int: The number of layers to skip in the clip model (read-only)
"""
return self.__clip_skip
@property
def sampling(self):
"""Sampling method
Returns:
Literal['sde-dpmsolver++']: The sampling method (read-only)
"""
return self.__sampling
@property
def vae(self):
"""VAE
Returns:
str: The VAE (read-only)
"""
return self.__vae
@property
def safety(self):
"""Safety checker
Returns:
bool: Whether to use the safety checker (read-only)
"""
return self.__safety
@property
def device(self):
"""Device
Returns:
str: The device (read-only)
"""
return self.__device
@device.setter
def device(self, value):
if self.__allocated:
raise RuntimeError("Cannot change device after the model is loaded.")
if value == 'cpu':
self.__device = value
else:
global _gpus
self.__device = f'{value}:{_gpus}'
max_gpu = torch.cuda.device_count()
_gpus = (_gpus + 1) if (_gpus + 1) < max_gpu else 0
self.__allocated = True
@property
def neg_prompt(self):
"""Negative prompt
Returns:
str: The negative prompt
"""
return self.__neg_prompt
@neg_prompt.setter
def neg_prompt(self, value):
if not value:
self.__neg_prompt = ""
else:
self.__neg_prompt = value
|