Spaces:
Runtime error
Runtime error
File size: 5,330 Bytes
d62eaf7 8c41dd4 d62eaf7 8c41dd4 d62eaf7 8c41dd4 e0800e8 d62eaf7 e0800e8 d62eaf7 e0800e8 d62eaf7 8c41dd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import plotly.graph_objs as go
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
import plotly.express as px
import numpy as np
import os
import pprint
import codecs
import chardet
import gradio as gr
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain import OpenAI, ConversationChain, LLMChain, PromptTemplate
from langchain.chains.conversation.memory import ConversationalBufferWindowMemory
from EdgeGPT import Chatbot
def get_content(input_file):
# Read the input file in binary mode
with open(input_file, 'rb') as f:
raw_data = f.read()
# Detect the encoding of the file
result = chardet.detect(raw_data)
encoding = result['encoding']
# Decode the contents using the detected encoding
with codecs.open(input_file, 'r', encoding=encoding) as f:
raw_text = f.read()
# Return the content of the input file
return raw_text
def split_text(input_file, chunk_size=1000, chunk_overlap=0):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
)
basename = os.path.basename(input_file)
basename = os.path.splitext(basename)[0]
raw_text = get_content(input_file=input_file)
texts = text_splitter.split_text(text=raw_text)
metadatas = [{"source": f"{basename}[{i}]"} for i in range(len(texts))]
docs = text_splitter.create_documents(texts=texts, metadatas=metadatas)
return texts, metadatas, docs
def create_docs(input_file):
# Create a text splitter object with a separator character
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=0,
length_function=len,
)
basename = os.path.basename(input_file)
basename = os.path.splitext(basename)[0]
texts = get_content(input_file=input_file)
metadatas = {'source': basename}
docs = text_splitter.create_documents(texts=[texts], metadatas=[metadatas])
return docs
def get_similar_docs(query, index, k=5):
similar_docs = index.similarity_search(query=query, k=k)
result = [(d.summary, d.metadata) for d in similar_docs]
return result
def convert_to_html(similar_docs):
result = []
for summary, metadata in similar_docs:
record = '<tr><td>' + summary + '</td><td>' + \
metadata['source'] + '</td></tr>'
result.append(record)
html = '<table><thead><th>Page Content</th><th>Source</th></thead><tbody>' + \
'\n'.join(result) + '</tbody></table>'
return html
def create_similarity_plot(embeddings, labels, query, n_clusters=3):
# Only include embeddings that have corresponding labels
embeddings_with_labels = [
embedding for i, embedding in enumerate(embeddings) if i < len(labels)]
# Reduce the dimensionality of the embeddings using PCA
pca = PCA(n_components=3)
pca_embeddings = pca.fit_transform(embeddings_with_labels)
# Cluster the embeddings using k-means
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(embeddings_with_labels)
# Create a trace for the query point
query_trace = go.Scatter3d(
x=[pca_embeddings[-1, 0]],
y=[pca_embeddings[-1, 1]],
z=[pca_embeddings[-1, 2]],
mode='markers',
marker=dict(
color='black',
symbol='diamond',
size=10
),
name=f"Query: '{query}'"
)
# Create a trace for the other points
points_trace = go.Scatter3d(
x=pca_embeddings[:, 0],
y=pca_embeddings[:, 1],
z=pca_embeddings[:, 2],
mode='markers',
marker=dict(
color=kmeans.labels_,
colorscale=px.colors.qualitative.Alphabet,
size=5
),
text=labels,
name='Points'
)
# Create the figure
fig = go.Figure(data=[query_trace, points_trace])
# Add a title and legend
fig.update_layout(
title="3D Similarity Plot",
legend_title_text="Cluster"
)
# Show the plot
fig.show()
def plot_similarities(query, index, embeddings=HuggingFaceEmbeddings(), k=5):
query_embeddings = embeddings.embed_query(text=query)
similar_docs = get_similar_docs(query=query, index=index, k=k)
texts = []
for d in similar_docs:
texts.append(d[0])
embeddings_array = embeddings.embed_documents(texts=texts)
# Get the index of the query point
query_index = len(embeddings_array) - 1
create_similarity_plot(
embeddings=embeddings_array,
labels=texts,
query_index=query_index,
n_clusters=3
)
def start_ui(index):
def query_index(query):
similar_docs = get_similar_docs(query=query, index=index)
formatted_output = convert_to_html(similar_docs=similar_docs)
return formatted_output
# Define input and output types
input = gr.inputs.Textbox(lines=2)
output = gr.outputs.HTML()
# Create interface object
iface = gr.Interface(fn=query_index,
inputs=input,
outputs=output)
# Launch interface
iface.launch() |