chats-bug
Fixed typo in examples
dc53ac5
raw
history blame
3.19 kB
import gradio as gr
import torch
from PIL import Image
from model import BlipBaseModel, GitBaseCocoModel
MODELS = {
"Git-Base-COCO": GitBaseCocoModel,
"Blip Base": BlipBaseModel,
}
torch.hub.download_url_to_file("https://huggingface.co/datasets/chats-bug/test-image-caption-Listed/blob/main/Image1.png", "image1.png")
torch.hub.download_url_to_file("https://huggingface.co/datasets/chats-bug/test-image-caption-Listed/blob/main/Image2.png", "image2.png")
torch.hub.download_url_to_file("https://huggingface.co/datasets/chats-bug/test-image-caption-Listed/blob/main/Image3.png", "image3.png")
examples = [["image1.png"], ["image2.png"], ["image3.png"]]
def generate_captions(
image,
num_captions,
model_name,
max_length,
temperature,
top_k,
top_p,
repetition_penalty,
diversity_penalty,
):
"""
Generates captions for the given image.
-----
Parameters:
image: PIL.Image
The image to generate captions for.
num_captions: int
The number of captions to generate.
** Rest of the parameters are the same as in the model.generate method. **
-----
Returns:
list[str]
"""
# Convert the numerical values to their corresponding types.
# Gradio Slider returns values as floats: except when the value is a whole number, in which case it returns an int.
# Only float values suffer from this issue.
temperature = float(temperature)
top_p = float(top_p)
repetition_penalty = float(repetition_penalty)
diversity_penalty = float(diversity_penalty)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MODELS[model_name](device)
captions = model.generate(
image=image,
max_length=max_length,
num_captions=num_captions,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
diversity_penalty=diversity_penalty,
)
# Convert list to a single string separated by newlines.
captions = "\n".join(captions)
return captions
title = "AI tool for generating captions for images"
description = "This tool uses pretrained models to generate captions for images."
interface = gr.Interface(
fn=generate_captions,
inputs=[
gr.components.Image(type="pil", label="Image"),
gr.components.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Captions to Generate"),
gr.components.Dropdown(MODELS.keys(), label="Model", value=list(MODELS.keys())[1]), # Default to Blip Base
gr.components.Slider(minimum=20, maximum=100, step=5, value=50, label="Maximum Caption Length"),
gr.components.Slider(minimum=0.1, maximum=10.0, step=0.1, value=1.0, label="Temperature"),
gr.components.Slider(minimum=1, maximum=100, step=1, value=50, label="Top K"),
gr.components.Slider(minimum=0.1, maximum=5.0, step=0.1, value=1.0, label="Top P"),
gr.components.Slider(minimum=1.0, maximum=10.0, step=0.1, value=2.0, label="Repetition Penalty"),
gr.components.Slider(minimum=0.0, maximum=10.0, step=0.1, value=2.0, label="Diversity Penalty"),
],
outputs=[
gr.components.Textbox(label="Caption"),
],
examples=examples,
title=title,
description=description,
allow_flagging="never",
)
if __name__ == "__main__":
# Launch the interface.
interface.launch(
enable_queue=True,
debug=True,
)