Spaces:
Sleeping
Sleeping
Add app file
Browse files- Dockerfile +29 -0
- app/__init__.py +0 -0
- app/main.py +58 -0
- app/rag.py +59 -0
- requirements.txt +6 -0
- start_service.sh +16 -0
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
FROM python:3.11
|
3 |
+
|
4 |
+
#
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
#
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
#
|
11 |
+
COPY ./start_service.sh /code/start_service.sh
|
12 |
+
|
13 |
+
#
|
14 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
15 |
+
|
16 |
+
#
|
17 |
+
COPY ./app /code/app
|
18 |
+
|
19 |
+
#
|
20 |
+
# EXPOSE 11434
|
21 |
+
|
22 |
+
#
|
23 |
+
RUN chmod +x /code/start_service.sh
|
24 |
+
|
25 |
+
# # Run .sh file
|
26 |
+
ENTRYPOINT ["/bin/bash", "/code/start_service.sh"]
|
27 |
+
|
28 |
+
#
|
29 |
+
# CMD ["fastapi", "run", "app/main.py", "--port", "80"]
|
app/__init__.py
ADDED
File without changes
|
app/main.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import tempfile
|
4 |
+
from tempfile import NamedTemporaryFile
|
5 |
+
from pathlib import Path
|
6 |
+
|
7 |
+
from fastapi import FastAPI, UploadFile
|
8 |
+
from fastapi.middleware import Middleware
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
+
from .rag import ChatPDF
|
11 |
+
|
12 |
+
middleware = [
|
13 |
+
Middleware(
|
14 |
+
CORSMiddleware,
|
15 |
+
allow_origins=["*"],
|
16 |
+
allow_methods=['*'],
|
17 |
+
allow_headers=['*']
|
18 |
+
)
|
19 |
+
]
|
20 |
+
|
21 |
+
app = FastAPI(middleware=middleware)
|
22 |
+
|
23 |
+
session_assistant = ChatPDF()
|
24 |
+
session_messages = []
|
25 |
+
|
26 |
+
@app.get("/query")
|
27 |
+
def process_input(text: str):
|
28 |
+
if text and len(text.strip()) > 0:
|
29 |
+
text = text.strip()
|
30 |
+
agent_text = session_assistant.ask(text)
|
31 |
+
session_messages.append((text, True))
|
32 |
+
session_messages.append((agent_text, False))
|
33 |
+
return agent_text
|
34 |
+
|
35 |
+
|
36 |
+
@app.post("/upload")
|
37 |
+
def upload(files: list[UploadFile]):
|
38 |
+
session_assistant.clear()
|
39 |
+
session_messages = []
|
40 |
+
|
41 |
+
for file in files:
|
42 |
+
path = f"files/{file.filename}"
|
43 |
+
try:
|
44 |
+
suffix = Path(file.filename).suffix
|
45 |
+
with NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
46 |
+
shutil.copyfileobj(file.file, tmp)
|
47 |
+
tmp_path = Path(tmp.name)
|
48 |
+
session_assistant.ingest(tmp_path)
|
49 |
+
os.remove(tmp_path)
|
50 |
+
finally:
|
51 |
+
file.file.close()
|
52 |
+
|
53 |
+
return "Files inserted!"
|
54 |
+
|
55 |
+
|
56 |
+
@app.get("/")
|
57 |
+
def ping():
|
58 |
+
return "Pong!"
|
app/rag.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.vectorstores import Chroma
|
2 |
+
from langchain_community.chat_models import ChatOllama
|
3 |
+
from langchain_community.embeddings import FastEmbedEmbeddings
|
4 |
+
from langchain.schema.output_parser import StrOutputParser
|
5 |
+
from langchain_community.document_loaders import PyMuPDFLoader
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.schema.runnable import RunnablePassthrough
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain_community.vectorstores.utils import filter_complex_metadata
|
10 |
+
|
11 |
+
|
12 |
+
class ChatPDF:
|
13 |
+
vector_store = None
|
14 |
+
retriever = None
|
15 |
+
chain = None
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.model = ChatOllama(model="phi3:mini")
|
19 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=100)
|
20 |
+
self.prompt = PromptTemplate.from_template(
|
21 |
+
"""
|
22 |
+
<s> [INST] You are an assistant for question-answering tasks. Use the following pieces of retrieved context
|
23 |
+
to answer the question. If you don't know the answer, just say that you don't know. Use three sentences
|
24 |
+
maximum and keep the answer concise. [/INST] </s>
|
25 |
+
[INST] Question: {question}
|
26 |
+
Context: {context}
|
27 |
+
Answer: [/INST]
|
28 |
+
"""
|
29 |
+
)
|
30 |
+
|
31 |
+
def ingest(self, pdf_file_path: str):
|
32 |
+
docs = PyMuPDFLoader(file_path=pdf_file_path).load()
|
33 |
+
chunks = self.text_splitter.split_documents(docs)
|
34 |
+
chunks = filter_complex_metadata(chunks)
|
35 |
+
|
36 |
+
vector_store = Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
37 |
+
self.retriever = vector_store.as_retriever(
|
38 |
+
search_type="similarity_score_threshold",
|
39 |
+
search_kwargs={
|
40 |
+
"k": 3,
|
41 |
+
"score_threshold": 0.5,
|
42 |
+
},
|
43 |
+
)
|
44 |
+
|
45 |
+
self.chain = ({"context": self.retriever, "question": RunnablePassthrough()}
|
46 |
+
| self.prompt
|
47 |
+
| self.model
|
48 |
+
| StrOutputParser())
|
49 |
+
|
50 |
+
def ask(self, query: str):
|
51 |
+
if not self.chain:
|
52 |
+
return "Please, add a PDF document first."
|
53 |
+
|
54 |
+
return self.chain.invoke(query)
|
55 |
+
|
56 |
+
def clear(self):
|
57 |
+
self.vector_store = None
|
58 |
+
self.retriever = None
|
59 |
+
self.chain = None
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
pymupdf
|
3 |
+
langchain
|
4 |
+
langchain-community
|
5 |
+
fastembed
|
6 |
+
chromadb
|
start_service.sh
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
#
|
4 |
+
curl -fsSL https://ollama.com/install.sh | sh
|
5 |
+
|
6 |
+
# Start Ollama in the background
|
7 |
+
ollama serve &
|
8 |
+
|
9 |
+
# Wait for Ollama to start
|
10 |
+
sleep 5
|
11 |
+
|
12 |
+
# Pull and run <YOUR_MODEL_NAME>
|
13 |
+
ollama pull phi3:mini
|
14 |
+
|
15 |
+
#
|
16 |
+
fastapi run /code/app/main.py --port 7860
|