from llama_index.core import ( SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings, get_response_synthesizer) from llama_index.core.query_engine import RetrieverQueryEngine, TransformQueryEngine from llama_index.core.node_parser import SentenceSplitter from llama_index.core.schema import TextNode, MetadataMode from llama_index.vector_stores.qdrant import QdrantVectorStore from llama_index.embeddings.ollama import OllamaEmbedding from llama_index.llms.ollama import Ollama from llama_index.core.retrievers import VectorIndexRetriever from llama_index.core.indices.query.query_transform import HyDEQueryTransform import qdrant_client import logging class ChatPDF: text_chunks = [] doc_ids = [] nodes = [] def __init__(self): logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=100) logger.info("initializing the vector store related objects") client = qdrant_client.QdrantClient(host="localhost", port=6333) vector_store = QdrantVectorStore(client=client, collection_name="rag_documents") logger.info("initializing the OllamaEmbedding") embed_model = OllamaEmbedding(model_name='mxbai-embed-large', request_timeout=1000000) logger.info("initializing the global settings") Settings.embed_model = embed_model Settings.llm = Ollama(model="qwen:1.8b", request_timeout=1000000) Settings.transformations = [text_parser] def ingest(self, dir_path: str): docs = SimpleDirectoryReader(input_dir=dir_path).load_data() logger.info("enumerating docs") for doc_idx, doc in enumerate(docs): curr_text_chunks = text_parser.split_text(doc.text) text_chunks.extend(curr_text_chunks) doc_ids.extend([doc_idx] * len(curr_text_chunks)) logger.info("enumerating text_chunks") for idx, text_chunk in enumerate(text_chunks): node = TextNode(text=text_chunk) src_doc = docs[doc_ids[idx]] node.metadata = src_doc.metadata nodes.append(node) logger.info("enumerating nodes") for node in nodes: node_embedding = embed_model.get_text_embedding( node.get_content(metadata_mode=MetadataMode.ALL) ) node.embedding = node_embedding logger.info("initializing the storage context") storage_context = StorageContext.from_defaults(vector_store=vector_store) logger.info("indexing the nodes in VectorStoreIndex") index = VectorStoreIndex( nodes=nodes, storage_context=storage_context, transformations=Settings.transformations, ) logger.info("initializing the VectorIndexRetriever with top_k as 5") vector_retriever = VectorIndexRetriever(index=index, similarity_top_k=5) response_synthesizer = get_response_synthesizer() logger.info("creating the RetrieverQueryEngine instance") vector_query_engine = RetrieverQueryEngine( retriever=vector_retriever, response_synthesizer=response_synthesizer, ) logger.info("creating the HyDEQueryTransform instance") hyde = HyDEQueryTransform(include_original=True) self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde) def ask(self, query: str): if not self.hyde_query_engine: return "Please, add a PDF document first." logger.info("retrieving the response to the query") response = self.hyde_query_engine.query(str_or_query_bundle=query) print(response) return response def clear(self): self.text_chunks = [] self.doc_ids = [] self.nodes = []