cheenchan commited on
Commit
7183988
·
1 Parent(s): 66f8dbc
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import tensorflow as tf
4
+ import pandas as pd
5
+ from sklearn.preprocessing import MinMaxScaler
6
+
7
+ # Load the saved model
8
+ model = tf.keras.models.load_model('models/emotion_model')
9
+
10
+ # Function to preprocess user inputs and perform prediction
11
+ def predict_emotion(spO2, heart_rate, body_temp):
12
+ scaler = MinMaxScaler() # Initialize scaler
13
+ scaler.fit(pd.DataFrame(columns=['spO2', 'heart-rate', 'body-temperature'], data=[[70, 50, 95.0], [100, 120, 105.0]])) # Fit scaler to specified range
14
+ input_data = np.array([[spO2, heart_rate, body_temp]])
15
+ input_data_scaled = scaler.transform(input_data)
16
+ predicted_emotions = model.predict(input_data_scaled)
17
+ return predicted_emotions[0]
18
+
19
+ def main():
20
+ st.title('Emotion Prediction App')
21
+ st.sidebar.title('Options')
22
+
23
+ # User input fields
24
+ st.sidebar.header('User Inputs')
25
+ spO2 = st.sidebar.slider('Select spO2 level', min_value=70, max_value=100, value=98)
26
+ heart_rate = st.sidebar.slider('Select heart rate', min_value=50, max_value=120, value=80)
27
+ body_temp = st.sidebar.slider('Select body temperature', min_value=95.0, max_value=105.0, value=98.6)
28
+
29
+ # Button to trigger emotion prediction
30
+ if st.sidebar.button('Predict Emotion'):
31
+ # Perform prediction using the loaded model
32
+ predicted_emotions = predict_emotion(spO2, heart_rate, body_temp)
33
+ emotions = ['Anger', 'Fear', 'Sadness', 'Disgust', 'Surprise', 'Anticipation', 'Trust', 'Joy']
34
+
35
+ # Display predicted emotions
36
+ st.subheader('Predicted Emotions')
37
+ for emotion, score in zip(emotions, predicted_emotions):
38
+ st.write(f'{emotion}: {score:.2f}')
39
+
40
+ # Determine likely emotions and display them
41
+ likely_emotions = [emotions[i] for i, score in enumerate(predicted_emotions) if score > 0.5]
42
+ st.success(f'Most likely emotion(s): {", ".join(likely_emotions)}')
43
+
44
+ if __name__ == '__main__':
45
+ main()
emo-final.csv ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ spO2,heart-rate,body-temperature,anger,fear,sadness,disgust,surprise,anticipation,trust,joy,stress,anxiety,depression
2
+ 98,83,99.1,2.3,1.3,0.4,0.3,2.0,2.8,3.7,3.9,3.8,3.6,3.2
3
+ 96,84,99.0,2.4,1.2,0.5,0.3,2.1,2.6,3.8,3.8,3.0,3.7,2.4
4
+ 94,80,97.9,2.0,1.8,0.7,0.5,1.5,2.2,3.1,3.7,2.9,2.9,2.7
5
+ 97,80,98.5,2.1,1.4,0.6,0.5,1.6,1.8,3.2,3.9,2.6,2.0,2.7
6
+ 93,80,98.3,1.6,1.4,0.9,0.4,1.4,1.8,3.1,3.5,2.6,3.5,2.3
7
+ 94,80,97.8,1.7,1.4,0.5,0.5,1.4,2.0,3.2,3.9,2.6,3.9,2.8
8
+ 97,88,99.0,2.4,1.4,0.5,0.5,2.2,2.1,3.8,4.9,2.6,3.6,2.8
9
+ 97,86,99.1,2.5,1.8,0.3,0.1,2.0,2.8,3.8,4.8,4.1,3.6,3.4
10
+ 99,85,98.3,2.6,1.8,0.3,0.4,2.2,2.9,3.8,4.9,4.1,3.7,3.0
11
+ 97,86,99.2,2.5,1.5,0.3,0.2,2.2,2.7,3.8,4.9,3.7,4.0,3.3
12
+ 97,86,99.1,2.4,1.2,0.4,0.3,2.1,2.8,3.8,4.7,3.9,3.7,3.1
13
+ 98,84,98.6,2.7,1.6,0.4,0.2,2.1,2.3,3.8,4.1,2.9,3.5,2.5
14
+ 93,80,98.8,1.7,1.5,0.7,0.3,2.1,2.7,3.8,4.7,4.2,4.0,3.4
15
+ 94,85,98.6,2.5,1.8,0.4,0.5,1.4,2.2,3.7,3.9,2.6,3.7,2.8
16
+ 93,80,98.1,1.7,1.3,0.9,0.6,1.5,1.8,3.2,3.6,2.9,3.7,2.5
17
+ 98,85,98.8,2.4,1.5,0.3,0.2,2.3,2.9,3.6,4.6,3.9,3.7,3.2
18
+ 98,82,98.4,2.4,1.2,0.3,0.4,2.2,2.8,3.8,4.8,4.4,4.1,2.7
19
+ 98,80,98.0,1.8,1.1,0.7,0.5,1.6,2.3,3.1,3.7,2.8,2.2,2.5
20
+ 97,84,99.2,2.7,1.8,0.3,0.2,2.1,3.0,3.8,4.7,3.8,3.9,3.2
21
+ 97,86,99.1,2.3,1.8,0.3,0.1,2.1,2.6,3.7,4.9,4.1,4.1,3.3
22
+ 94,83,98.1,2.2,1.2,0.6,0.6,2.2,2.1,3.2,3.9,2.9,4.0,2.9
23
+ 97,84,98.6,2.7,1.8,0.3,0.1,2.2,3.0,3.8,4.7,4.1,4.1,3.2
24
+ 97,86,98.7,2.5,1.0,0.5,0.2,2.2,2.8,3.8,4.7,4.3,4.0,3.3
25
+ 97,86,99.2,2.4,1.5,0.3,0.3,2.4,2.7,3.8,4.7,4.2,3.6,3.4
26
+ 98,84,99.1,2.5,1.5,0.3,0.1,2.1,2.5,3.8,4.8,3.9,4.0,3.2
27
+ 93,80,98.2,2.1,1.5,0.4,0.5,1.6,1.9,3.2,3.7,2.7,4.1,2.8
28
+ 94,83,99.0,1.7,1.2,0.4,0.4,2.0,2.7,3.4,3.9,2.7,4.0,2.5
29
+ 98,84,99.0,2.4,1.8,0.3,0.2,2.0,2.7,3.8,4.8,4.1,3.5,3.3
30
+ 96,85,99.0,1.6,1.3,0.6,0.5,2.3,3.0,3.8,4.1,3.9,3.7,2.7
31
+ 95,80,98.8,1.6,1.5,0.4,0.4,1.4,2.0,3.8,4.0,2.6,3.5,2.8
32
+ 98,84,98.8,2.7,1.8,0.3,0.4,2.2,2.8,3.8,4.2,3.2,3.7,2.6
33
+ 97,84,98.8,2.5,1.5,0.3,0.4,2.1,2.4,3.8,3.9,3.9,3.8,2.6
34
+ 97,82,98.9,2.7,1.6,0.5,0.2,2.1,2.8,3.6,4.8,3.9,3.5,2.6
35
+ 95,80,98.4,1.9,1.1,0.4,0.6,1.5,2.6,3.0,3.7,3.0,3.8,2.6
36
+ 93,80,98.4,1.4,0.9,0.7,0.5,1.7,2.1,3.3,3.5,2.6,3.8,2.6
37
+ 96,85,98.3,1.9,1.3,0.6,0.5,1.9,3.0,3.3,4.2,2.7,2.1,2.8
38
+ 97,84,99.2,2.7,1.8,0.3,0.2,2.2,2.9,3.8,4.9,4.1,3.6,3.2
39
+ 93,80,98.1,1.8,0.8,0.9,0.5,1.4,2.1,3.3,4.1,2.6,3.6,2.3
40
+ 94,80,97.8,2.0,1.5,0.9,0.5,1.5,1.9,3.1,3.9,2.6,3.6,2.3
41
+ 95,80,98.0,2.1,1.4,0.8,0.4,1.4,1.9,3.0,3.5,2.6,3.4,2.4
42
+ 97,85,99.0,2.7,1.8,0.3,0.1,2.3,2.8,3.8,4.9,4.0,3.9,3.2
43
+ 97,85,98.9,2.1,1.8,0.4,0.5,2.1,2.7,3.8,4.2,2.9,3.7,2.9
44
+ 97,84,99.2,2.7,1.8,0.3,0.1,2.4,2.8,3.8,4.9,4.1,4.1,3.2
45
+ 95,80,98.3,2.4,1.7,0.4,0.6,1.4,2.7,3.1,4.2,4.2,3.4,2.8
46
+ 97,85,98.7,2.7,1.3,0.3,0.1,1.5,2.6,3.8,4.6,4.1,3.7,2.9
47
+ 96,81,99.0,2.6,1.1,0.7,0.6,1.6,1.9,3.8,4.1,2.9,3.5,2.5
48
+ 97,86,98.8,2.6,1.4,0.4,0.2,2.0,2.7,3.7,4.9,4.4,3.6,2.6
49
+ 97,85,99.1,2.7,1.4,0.4,0.1,2.0,2.9,3.8,4.9,4.0,3.8,3.0
50
+ 95,83,99.2,2.7,1.6,0.4,0.3,2.1,2.7,3.8,4.0,4.1,4.0,2.9
51
+ 98,84,98.9,2.7,1.8,0.3,0.1,2.1,2.7,3.8,4.7,4.1,4.1,3.1
52
+ 97,83,99.1,2.1,1.7,0.4,0.4,1.9,2.6,3.7,3.9,2.7,4.0,2.3
53
+ 93,80,98.3,1.7,1.4,0.8,0.6,1.4,1.8,3.3,3.5,2.6,3.6,2.3
54
+ 97,85,98.8,2.6,1.8,0.3,0.3,2.3,2.8,3.8,4.9,4.0,3.6,3.5
55
+ 93,80,98.1,1.5,0.7,0.6,0.4,1.4,1.8,3.0,3.8,2.8,2.0,2.6
56
+ 97,84,99.1,2.7,1.8,0.3,0.1,2.2,3.1,3.8,4.7,4.3,4.1,3.3
57
+ 94,80,97.9,1.8,1.4,0.8,0.6,1.6,2.2,3.3,3.7,2.9,4.1,2.3
58
+ 96,87,98.7,2.7,1.3,0.5,0.2,2.2,3.1,3.7,4.3,3.8,3.7,3.0
59
+ 96,80,98.3,2.0,1.2,0.4,0.6,1.4,2.1,2.9,3.7,2.7,4.0,2.6
60
+ 98,85,99.2,2.7,1.6,0.4,0.1,1.9,3.0,3.8,4.8,4.3,4.0,3.2
61
+ 97,85,98.8,1.8,1.7,0.3,0.3,2.1,1.8,3.8,4.0,2.9,3.8,2.5
62
+ 97,80,98.8,1.7,1.8,0.3,0.4,2.0,2.5,3.8,4.3,4.0,3.8,2.5
63
+ 95,80,98.2,2.1,1.8,0.4,0.5,1.4,1.8,3.2,4.1,2.8,3.7,3.0
64
+ 95,83,98.9,2.6,1.2,0.5,0.6,1.5,2.3,3.2,3.8,2.8,3.7,2.8
65
+ 97,85,98.2,2.7,1.7,0.4,0.5,2.1,2.8,3.8,4.7,3.9,3.7,2.3
66
+ 98,85,99.2,2.5,1.8,0.3,0.1,1.9,2.8,3.8,4.9,3.9,4.0,3.3
67
+ 93,80,98.0,1.8,1.6,0.8,0.6,1.4,1.8,3.3,3.6,2.6,3.6,2.3
68
+ 95,80,98.4,1.9,1.5,0.4,0.4,1.5,2.1,3.3,4.2,2.8,3.9,2.6
69
+ 97,85,99.0,2.7,1.3,0.3,0.1,2.2,2.9,3.8,4.7,3.9,3.6,3.2
70
+ 93,80,98.2,1.7,1.2,0.7,0.5,1.6,1.9,3.1,3.9,2.6,3.6,2.5
71
+ 96,85,98.7,2.5,1.8,0.3,0.2,2.2,3.0,3.8,4.8,4.3,4.0,3.4
72
+ 97,84,99.2,2.3,1.8,0.3,0.3,2.3,2.6,3.6,4.9,3.8,3.7,3.4
73
+ 97,80,98.1,2.0,1.1,0.7,0.4,1.4,1.8,3.8,3.5,2.6,3.6,2.4
74
+ 97,83,99.0,2.2,1.3,0.5,0.2,1.9,2.7,3.8,3.9,4.2,2.3,2.6
75
+ 95,80,98.5,1.8,1.6,0.4,0.5,1.4,2.0,3.4,3.5,2.6,4.1,2.7
76
+ 97,83,99.2,2.3,1.6,0.3,0.2,2.3,2.9,3.8,4.9,3.9,2.0,3.3
77
+ 97,80,99.2,2.3,1.5,0.3,0.6,2.1,3.1,3.8,4.3,3.0,3.8,3.2
78
+ 98,84,98.5,1.7,1.8,0.3,0.3,2.1,3.1,3.8,4.6,3.9,3.5,2.8
79
+ 97,80,98.1,1.9,1.4,0.4,0.1,2.1,2.9,3.8,4.3,4.2,4.0,2.8
80
+ 98,85,98.9,2.4,1.8,0.3,0.6,1.8,3.1,3.8,4.8,4.0,3.8,3.4
81
+ 97,83,98.8,2.2,1.5,0.4,0.5,1.5,2.9,3.7,4.9,2.6,3.8,2.9
82
+ 95,80,97.8,1.9,1.4,0.3,0.5,1.5,2.3,3.8,3.9,2.6,3.6,3.1
83
+ 93,80,98.5,1.6,1.2,0.8,0.6,1.5,2.1,3.1,3.8,2.6,3.9,2.4
84
+ 94,80,98.7,1.3,1.1,0.8,0.5,1.4,2.0,3.3,3.9,2.7,3.7,2.3
85
+ 97,80,98.7,2.7,1.8,0.5,0.2,1.6,2.8,3.4,4.0,4.2,2.0,3.1
86
+ 97,82,99.2,2.7,1.8,0.3,0.1,2.0,2.8,3.8,4.7,4.2,4.1,3.4
87
+ 97,80,98.6,1.8,1.6,0.7,0.5,1.4,2.0,3.2,3.6,2.6,3.9,2.8
88
+ 97,80,98.8,1.7,1.6,0.4,0.3,2.1,2.9,3.8,4.9,4.2,3.8,3.1
89
+ 97,84,99.2,2.7,1.8,0.3,0.3,2.2,2.7,3.8,4.8,3.6,3.9,3.2
90
+ 97,84,99.2,2.7,1.8,0.3,0.1,2.3,2.6,3.7,4.8,3.6,4.1,3.1
91
+ 93,80,98.3,2.0,0.8,0.7,0.4,1.5,2.3,3.3,3.9,2.7,3.7,2.7
92
+ 97,80,98.5,2.6,1.1,0.4,0.4,2.1,2.0,3.1,3.8,2.8,2.8,2.6
93
+ 98,88,99.1,2.5,1.6,0.3,0.1,2.2,2.9,3.8,4.6,3.8,3.9,3.2
94
+ 98,84,98.7,2.5,1.8,0.4,0.5,2.2,2.6,3.8,4.7,4.1,3.5,3.4
95
+ 96,84,99.2,2.6,1.3,0.4,0.6,2.0,2.0,3.8,4.1,3.7,3.7,3.0
96
+ 93,80,98.0,1.9,1.3,0.8,0.5,1.5,2.0,3.5,3.9,2.8,3.8,2.4
97
+ 97,84,99.0,2.6,1.5,0.3,0.1,2.2,2.7,3.7,4.9,3.8,3.9,2.9
98
+ 93,80,98.0,1.9,1.8,0.9,0.4,1.4,1.8,3.2,3.8,2.6,3.7,2.3
99
+ 97,84,99.1,2.7,1.7,0.3,0.1,2.3,3.0,3.8,4.9,4.1,3.9,3.3
100
+ 95,80,98.6,2.4,1.7,0.3,0.5,1.6,2.6,3.8,4.8,2.6,3.9,3.4
101
+ 93,80,98.9,1.8,1.5,0.9,0.6,1.4,2.1,3.0,3.8,2.6,4.0,2.5
102
+ 97,84,99.0,2.7,1.7,0.4,0.1,2.1,3.0,3.8,4.9,3.9,3.7,3.5
103
+ 98,83,99.0,2.7,1.8,0.3,0.1,2.0,2.9,3.8,4.7,4.1,3.9,3.2
104
+ 97,83,98.7,2.7,1.8,0.3,0.4,2.2,3.1,3.8,4.9,4.0,3.9,3.4
105
+ 97,82,99.0,2.7,1.8,0.3,0.1,2.2,2.7,3.8,4.9,3.6,4.1,3.0
106
+ 93,84,98.8,2.1,1.2,0.3,0.4,1.6,2.2,3.0,3.8,2.8,3.8,2.4
107
+ 98,80,98.4,2.3,1.2,0.8,0.5,1.5,1.9,3.1,3.9,2.6,3.7,2.4
108
+ 95,80,98.5,1.8,1.1,0.6,0.5,1.6,1.8,3.2,4.1,2.9,3.9,2.9
109
+ 97,85,98.8,2.7,1.8,0.3,0.1,2.2,2.5,3.8,4.9,4.3,3.8,3.4
110
+ 97,86,99.0,2.7,1.8,0.4,0.1,2.0,2.7,3.7,4.7,4.0,3.9,3.3
111
+ 97,86,99.1,2.7,1.7,0.3,0.1,2.3,2.6,3.8,4.9,3.9,3.9,3.4
112
+ 97,85,99.1,2.7,1.4,0.5,0.2,1.5,2.7,3.1,4.1,3.2,3.5,2.4
113
+ 97,86,98.7,2.5,1.4,0.3,0.1,2.2,2.7,3.7,4.9,4.0,4.1,3.0
114
+ 93,80,98.4,1.4,0.8,0.7,0.5,1.4,1.8,3.4,3.5,2.6,3.6,2.6
115
+ 96,84,99.1,2.7,1.6,0.3,0.1,2.3,2.7,3.8,4.8,4.0,3.6,3.3
116
+ 97,83,98.9,2.7,1.6,0.5,0.3,1.7,2.8,3.8,4.6,4.2,3.5,2.7
117
+ 97,85,99.1,2.7,1.8,0.3,0.2,2.3,2.6,3.8,4.6,4.1,3.6,3.2
118
+ 94,80,98.5,2.2,1.4,0.7,0.6,1.4,2.0,3.1,4.0,2.9,3.8,2.6
119
+ 97,84,99.1,2.6,1.8,0.3,0.2,2.3,2.8,3.8,4.9,3.9,4.0,3.3
120
+ 93,80,98.1,1.8,1.0,0.8,0.6,1.4,1.8,3.1,3.5,2.6,3.7,2.3
121
+ 93,80,98.2,1.9,1.5,0.4,0.4,1.4,2.2,3.1,4.5,3.0,3.6,2.5
122
+ 98,83,99.2,2.6,1.8,0.4,0.1,2.1,2.9,3.7,4.9,4.2,4.1,3.4
123
+ 96,80,98.1,1.6,1.5,0.8,0.6,1.4,2.1,3.3,4.4,3.0,4.0,2.8
124
+ 97,85,99.0,2.7,1.8,0.3,0.2,2.2,2.8,3.8,4.7,4.4,4.1,3.4
125
+ 97,83,98.9,2.6,1.8,0.4,0.2,2.3,2.9,3.7,4.9,4.0,3.8,2.4
126
+ 97,85,99.0,2.7,1.5,0.3,0.1,2.1,2.8,3.8,4.7,4.1,3.2,3.2
127
+ 97,84,98.7,2.6,1.8,0.3,0.2,2.2,2.1,3.8,3.9,4.1,4.0,3.0
128
+ 94,84,98.1,2.2,1.5,0.6,0.4,1.5,2.7,3.7,4.3,2.7,3.7,2.9
129
+ 97,85,98.3,2.7,1.3,0.5,0.2,2.0,2.8,3.8,4.0,2.7,3.8,2.7
130
+ 94,80,98.0,2.2,1.0,0.8,0.5,1.4,1.9,3.3,3.9,2.6,4.0,2.3
131
+ 98,85,98.8,2.7,1.4,0.3,0.2,1.4,3.0,3.8,4.3,3.9,3.7,2.7
132
+ 94,86,99.0,2.7,1.6,0.4,0.3,2.2,2.9,3.6,4.3,3.8,3.9,2.4
133
+ 95,83,99.1,1.9,1.4,0.3,0.5,1.6,2.7,3.8,3.7,2.6,3.7,2.5
134
+ 97,84,98.8,2.6,1.8,0.3,0.2,2.2,2.9,3.8,4.8,4.2,3.7,3.4
135
+ 97,86,98.7,2.0,1.3,0.4,0.5,2.1,2.7,3.8,4.3,3.0,2.9,2.7
136
+ 95,85,98.3,1.6,1.1,0.5,0.3,1.7,2.0,3.8,4.0,3.3,3.8,2.5
137
+ 97,80,98.2,2.2,1.5,0.5,0.6,1.6,1.8,3.2,3.8,2.6,3.8,2.4
138
+ 98,85,98.9,2.7,1.8,0.4,0.1,2.1,2.8,3.8,4.8,4.4,3.9,3.5
139
+ 96,80,98.7,1.9,1.3,0.7,0.4,1.5,1.8,3.1,3.5,3.6,3.5,2.6
140
+ 95,80,98.3,1.6,1.7,0.7,0.5,1.7,2.7,3.0,4.6,2.6,4.0,2.7
141
+ 97,82,99.0,2.7,1.2,0.3,0.1,2.2,2.9,3.8,4.9,4.1,3.8,3.1
142
+ 98,84,98.8,1.9,1.3,0.6,0.2,1.6,1.9,2.9,4.3,2.8,3.7,2.5
143
+ 96,80,97.8,2.2,1.3,0.3,0.4,1.7,2.1,3.8,4.5,2.9,4.0,2.6
144
+ 95,80,97.9,2.0,1.8,0.8,0.1,1.4,1.9,2.9,4.1,2.7,4.0,2.5
145
+ 97,83,99.2,1.7,1.7,0.4,0.1,2.1,2.4,3.0,4.1,3.9,3.7,2.6
146
+ 99,86,98.8,2.1,1.8,0.4,0.1,2.2,2.9,3.8,4.7,4.3,3.5,2.6
147
+ 97,86,99.1,2.7,1.8,0.3,0.7,2.2,2.1,3.7,4.0,2.6,3.6,3.1
148
+ 95,80,97.9,1.6,1.7,0.7,0.1,1.6,2.0,3.3,3.8,3.1,2.5,2.3
149
+ 96,84,98.6,2.6,1.4,0.4,0.5,2.1,2.9,3.8,4.9,3.8,3.7,3.2
150
+ 95,80,98.4,2.0,1.2,0.9,0.5,1.6,2.1,3.1,3.8,2.6,3.9,3.2
151
+ 98,80,98.9,2.7,1.4,0.4,0.2,2.4,2.7,3.4,4.9,3.7,3.9,3.4
152
+ 99,84,99.1,2.7,1.8,0.3,0.2,2.0,2.6,3.8,4.7,3.9,3.8,3.5
153
+ 94,84,98.4,2.0,1.6,0.3,0.4,2.1,2.9,3.8,4.8,2.6,3.6,3.1
154
+ 97,80,98.3,2.0,1.4,0.4,0.5,1.6,2.7,3.8,3.9,2.6,3.4,2.6
155
+ 98,87,99.1,2.7,1.5,0.3,0.2,2.1,2.6,3.8,4.7,4.3,3.9,2.3
156
+ 99,85,99.0,2.5,1.6,0.3,0.5,2.0,2.2,3.7,4.0,2.8,4.1,3.0
157
+ 97,85,98.8,2.7,1.8,0.4,0.4,2.0,2.6,3.8,4.9,4.0,3.7,2.7
158
+ 97,84,99.0,1.9,1.1,0.4,0.3,1.5,2.6,2.9,4.1,2.6,3.7,3.3
159
+ 97,84,98.9,2.6,1.5,0.3,0.1,2.4,2.8,3.8,4.8,4.0,3.9,3.1
160
+ 93,80,98.1,1.5,1.0,0.8,0.5,1.4,2.1,3.3,4.0,2.6,3.5,2.8
161
+ 93,80,98.2,1.7,0.9,0.9,0.6,1.4,1.8,3.1,3.8,2.6,2.0,2.3
162
+ 93,80,97.9,2.2,1.3,0.8,0.6,1.5,1.9,3.8,4.3,2.6,3.9,2.6
163
+ 98,84,99.0,2.1,1.2,0.5,0.1,2.2,3.0,3.8,3.9,4.0,4.1,2.8
164
+ 97,85,99.0,2.1,1.5,0.4,0.2,2.1,2.8,3.7,4.7,4.3,3.8,2.8
165
+ 97,85,98.9,2.7,1.8,0.4,0.1,2.3,2.6,3.8,4.9,4.3,4.0,3.0
166
+ 96,85,98.9,2.7,1.8,0.3,0.1,2.2,3.0,3.8,4.9,4.0,3.9,3.5
167
+ 93,80,97.8,2.1,1.2,0.8,0.6,1.4,1.9,3.2,3.9,2.8,4.1,2.3
168
+ 94,80,98.9,2.0,0.9,0.7,0.2,1.7,1.9,3.3,3.7,2.7,4.0,2.3
169
+ 97,86,99.0,2.4,1.2,0.4,0.5,1.6,2.5,3.0,4.7,4.0,3.8,3.1
170
+ 98,85,98.9,2.4,1.4,0.4,0.6,2.1,2.7,3.0,4.2,4.2,3.7,2.4
171
+ 98,83,98.3,1.8,1.8,0.4,0.6,1.4,2.3,3.8,4.2,2.6,4.0,2.7
172
+ 97,84,99.2,2.3,1.6,0.3,0.2,2.4,2.8,3.8,4.7,3.9,3.8,3.1
173
+ 97,82,98.9,2.5,1.8,0.3,0.1,2.3,2.5,3.8,4.5,4.3,3.8,3.4
174
+ 97,83,99.2,2.7,1.8,0.3,0.1,2.1,2.7,3.8,4.7,3.8,4.0,3.4
175
+ 95,83,97.9,2.1,1.6,0.6,0.4,1.5,1.8,3.2,3.8,2.7,2.2,2.6
176
+ 94,80,98.0,1.7,1.2,0.9,0.6,1.5,1.8,3.2,3.7,2.8,4.0,2.3
177
+ 94,83,99.0,2.2,1.4,0.7,0.4,2.2,2.7,3.1,3.9,3.8,4.1,2.9
178
+ 96,86,99.2,2.7,1.8,0.4,0.2,2.2,3.0,3.8,4.9,4.0,3.8,2.8
179
+ 97,85,98.9,2.5,1.8,0.3,0.1,2.4,2.8,3.8,4.9,4.2,4.1,3.1
180
+ 98,84,99.2,2.3,1.7,0.4,0.1,2.2,3.0,3.8,4.8,4.1,3.8,3.5
181
+ 96,80,97.8,2.1,1.3,0.7,0.4,2.1,2.0,3.2,4.2,3.0,3.7,2.5
182
+ 97,83,98.9,2.7,1.1,0.4,0.5,2.3,2.8,3.7,4.9,4.0,3.8,3.4
183
+ 98,84,99.2,2.3,1.0,0.5,0.4,2.3,2.8,3.8,4.9,3.9,3.7,3.2
184
+ 96,80,97.8,1.3,1.4,0.8,0.4,1.4,1.8,3.2,3.5,2.6,3.9,2.7
185
+ 97,84,98.7,2.4,1.6,0.3,0.2,2.2,2.9,3.8,4.1,4.1,3.7,2.8
186
+ 96,81,98.4,2.1,1.4,0.6,0.3,2.0,1.8,2.9,4.5,3.8,3.7,2.8
187
+ 96,86,99.1,1.7,1.4,0.4,0.3,2.1,2.0,3.8,3.8,2.8,3.4,2.7
188
+ 93,80,98.3,1.7,1.1,0.8,0.5,1.7,1.9,3.0,4.1,2.7,3.5,2.4
189
+ 97,87,99.0,2.4,1.3,0.4,0.6,2.3,3.1,3.8,4.9,3.9,3.7,3.0
190
+ 98,85,99.2,2.7,1.7,0.3,0.1,2.1,3.0,3.8,4.7,4.2,3.6,3.2
191
+ 98,88,99.1,2.7,1.7,0.4,0.2,2.2,2.7,3.8,4.9,4.0,3.8,3.3
192
+ 94,80,98.1,1.7,1.3,0.7,0.7,1.4,2.3,3.4,4.0,2.8,2.0,2.9
193
+ 98,87,99.1,2.6,1.4,0.4,0.1,2.1,2.8,3.8,4.9,4.3,3.9,3.2
194
+ 95,85,98.7,2.5,1.7,0.7,0.4,2.3,2.7,3.6,4.0,3.9,3.9,2.9
195
+ 97,84,98.8,2.7,1.6,0.5,0.2,2.3,3.1,3.8,4.7,4.2,3.9,3.3
196
+ 97,84,99.2,2.3,1.4,0.3,0.1,2.1,2.8,3.8,4.7,3.7,3.8,2.7
197
+ 97,84,99.1,2.4,1.8,0.4,0.3,2.2,3.0,3.8,4.1,4.2,4.1,3.2
198
+ 97,84,99.2,2.7,1.8,0.3,0.2,2.2,2.8,3.8,4.9,3.9,4.0,3.2
199
+ 93,83,98.3,1.9,1.1,0.7,0.4,1.5,2.4,3.3,3.9,2.9,3.8,2.5
200
+ 93,80,98.1,1.7,1.7,0.9,0.6,1.5,1.8,3.3,3.5,2.6,3.9,2.4
201
+ 96,80,99.1,2.2,1.7,0.3,0.3,2.2,2.8,3.0,4.1,2.6,3.9,3.1
202
+ 95,80,98.3,1.9,0.9,0.6,0.6,1.4,1.9,3.1,4.0,2.6,3.6,2.8
203
+ 97,84,98.1,1.8,1.4,0.3,0.5,1.9,2.0,3.4,4.2,2.6,4.1,2.5
204
+ 98,84,98.8,2.3,0.8,0.4,0.1,2.2,2.7,3.7,4.7,4.0,3.8,3.2
205
+ 97,83,98.8,1.6,1.3,0.5,0.1,2.2,2.8,3.7,4.1,2.7,3.7,2.9
206
+ 98,83,99.0,2.6,1.8,0.4,0.3,2.2,2.9,3.8,4.8,4.0,3.9,3.4
207
+ 98,84,98.8,2.7,1.8,0.3,0.1,2.3,2.4,3.8,4.8,4.1,4.0,3.5
208
+ 97,84,99.1,2.5,1.7,0.4,0.1,2.2,3.0,3.8,4.8,3.9,3.9,3.4
209
+ 93,80,98.1,1.6,1.3,0.5,0.5,1.4,1.8,3.4,3.8,2.9,3.5,2.6
210
+ 96,80,98.3,1.9,1.3,0.7,0.3,1.4,1.9,3.3,3.7,2.6,3.5,2.5
211
+ 93,80,97.9,1.4,1.1,0.9,0.7,1.4,1.9,3.3,4.2,2.7,4.1,2.3
212
+ 98,85,98.7,2.6,1.8,0.3,0.2,2.2,2.8,3.7,4.6,4.0,3.8,3.4
213
+ 94,80,98.0,1.6,1.2,0.3,0.5,1.5,1.9,2.9,4.3,2.8,2.0,2.7
214
+ 97,85,98.7,2.5,1.7,0.3,0.1,2.2,2.9,3.8,4.1,3.9,3.9,3.4
215
+ 96,83,98.9,2.6,1.8,0.4,0.2,2.0,3.1,3.8,4.7,4.1,3.8,3.3
216
+ 97,85,99.2,2.4,1.8,0.3,0.1,2.2,3.1,3.8,4.8,3.9,3.9,3.3
217
+ 97,83,99.2,2.7,1.8,0.3,0.2,2.0,2.6,3.8,4.9,4.0,3.8,3.3
218
+ 94,87,98.1,2.2,1.3,0.6,0.7,1.4,2.1,3.2,4.1,2.6,3.8,2.3
219
+ 96,84,99.2,2.7,1.8,0.3,0.1,2.0,2.5,3.8,4.7,3.8,4.0,3.5
220
+ 97,83,99.2,2.7,1.2,0.3,0.1,2.3,2.9,3.8,4.8,4.2,4.0,3.0
221
+ 94,80,98.8,1.8,1.5,0.8,0.5,1.5,1.9,3.3,3.9,2.7,3.9,2.6
222
+ 97,84,98.9,2.7,1.8,0.3,0.2,2.3,3.0,3.8,4.9,4.3,3.9,2.7
223
+ 98,86,98.6,2.7,1.6,0.4,0.5,1.7,2.9,2.8,4.7,4.1,3.9,2.8
224
+ 97,84,99.2,2.5,1.8,0.4,0.1,2.1,2.7,3.7,4.7,3.9,3.9,3.3
225
+ 93,80,98.1,1.5,1.3,0.9,0.4,1.4,1.8,3.2,3.6,3.1,3.7,2.7
226
+ 98,85,99.0,2.7,1.8,0.4,0.5,2.4,2.8,3.7,4.9,3.9,3.8,2.5
227
+ 98,86,99.1,2.7,1.8,0.3,0.3,2.0,2.8,3.7,4.9,4.6,3.8,3.4
228
+ 97,80,98.1,1.8,1.5,0.5,0.6,1.5,1.8,3.2,3.9,2.9,4.0,2.7
229
+ 96,86,98.9,2.6,1.8,0.3,0.1,2.3,2.8,3.8,4.8,3.8,2.9,3.3
230
+ 95,83,98.1,1.9,1.3,0.3,0.5,1.7,3.0,3.4,4.2,3.9,3.8,2.5
231
+ 97,83,98.6,1.8,1.7,0.6,0.5,1.6,1.8,3.4,4.3,2.7,3.3,2.5
232
+ 97,85,98.5,1.9,1.8,0.4,0.4,2.1,2.7,2.8,4.3,4.0,2.7,2.7
233
+ 97,84,99.2,2.4,1.7,0.3,0.1,2.3,3.0,3.8,4.9,3.9,4.0,3.5
234
+ 94,83,98.7,2.1,1.2,0.4,0.2,2.1,2.2,3.2,4.0,3.9,3.8,3.1
235
+ 94,80,98.5,1.7,1.2,0.8,0.4,1.5,2.3,3.2,4.0,3.0,4.1,2.5
236
+ 97,86,99.0,2.5,1.8,0.4,0.1,2.1,3.1,3.8,4.9,4.2,3.7,3.2
237
+ 98,86,98.8,2.5,1.1,0.3,0.3,2.0,2.8,3.8,4.8,4.0,3.9,2.9
238
+ 97,83,98.8,2.7,1.8,0.3,0.1,2.3,2.9,3.8,4.4,4.2,3.7,3.1
239
+ 98,83,98.8,2.5,1.8,0.3,0.1,2.3,2.5,3.8,4.9,4.2,4.1,3.4
240
+ 97,84,99.1,2.6,1.8,0.4,0.1,2.2,3.0,3.8,4.7,4.0,3.9,3.2
241
+ 97,86,98.9,2.7,1.6,0.4,0.1,2.2,2.9,3.8,4.8,4.5,4.0,3.2
242
+ 97,83,97.9,1.6,1.0,0.4,0.6,1.6,2.3,3.3,4.0,4.2,3.8,2.9
243
+ 97,84,98.3,2.0,1.3,0.5,0.5,2.1,2.9,3.8,4.3,4.3,4.1,2.6
244
+ 93,80,97.8,2.1,1.3,0.8,0.3,1.6,2.4,3.2,3.7,2.6,2.8,2.6
245
+ 94,83,99.0,2.2,1.5,0.4,0.1,1.9,2.8,3.3,4.2,3.7,3.7,2.5
246
+ 94,84,98.2,2.2,1.1,0.3,0.5,2.2,2.8,3.3,4.8,2.8,3.8,2.9
247
+ 94,80,97.9,2.0,1.4,0.7,0.6,1.5,1.8,3.2,4.4,2.9,2.7,2.3
248
+ 94,80,98.3,1.6,1.2,0.7,0.6,1.6,2.0,3.2,4.3,4.0,4.0,2.6
249
+ 97,80,98.1,1.8,1.0,0.9,0.6,1.4,1.8,3.1,3.7,2.7,3.4,2.6
250
+ 96,86,98.9,2.5,1.2,0.4,0.3,2.2,3.0,3.8,4.2,3.1,3.8,2.4
251
+ 94,86,98.2,2.2,1.8,0.3,0.1,1.8,2.3,3.2,4.3,2.6,3.9,2.6
252
+ 98,86,98.9,2.7,1.5,0.4,0.1,2.2,2.8,3.8,4.8,4.5,3.8,3.3
253
+ 97,83,98.7,1.5,1.3,0.8,0.1,2.0,2.7,3.8,4.0,3.9,3.4,2.5
254
+ 97,83,99.2,2.7,1.7,0.3,0.1,2.2,2.7,3.8,4.9,4.1,4.0,3.3
255
+ 98,84,98.3,2.7,1.5,0.5,0.2,2.0,3.0,3.8,4.7,4.0,3.6,2.5
256
+ 97,86,99.0,2.6,1.7,0.4,0.1,2.4,3.0,3.8,4.9,4.2,4.0,3.1
257
+ 97,80,99.0,2.7,1.4,0.4,0.3,2.2,2.6,3.4,3.7,4.0,3.8,2.7
258
+ 93,80,97.8,1.9,1.1,0.7,0.5,1.4,2.5,3.4,4.1,2.7,3.0,2.5
259
+ 97,84,99.1,2.5,1.8,0.3,0.1,2.2,2.7,3.7,4.6,4.2,4.0,3.3
260
+ 98,85,98.7,2.4,1.8,0.3,0.1,2.1,2.4,3.8,4.8,4.2,3.7,3.2
261
+ 97,86,98.8,2.4,1.2,0.4,0.6,2.0,2.8,3.7,4.9,2.8,3.6,2.9
262
+ 98,83,99.1,2.6,1.8,0.3,0.2,2.0,2.9,3.8,4.6,4.4,4.1,3.4
263
+ 95,85,98.1,2.6,1.3,0.4,0.2,2.0,3.0,3.7,3.9,2.7,3.9,2.6
264
+ 98,83,99.2,2.6,1.6,0.3,0.2,2.2,3.1,3.8,4.9,4.1,4.1,3.2
265
+ 95,85,99.1,1.6,1.5,0.5,0.5,1.7,2.1,3.4,4.3,2.6,3.7,2.7
266
+ 97,85,98.8,2.7,1.8,0.4,0.1,2.1,3.0,3.8,4.9,4.2,3.7,2.6
267
+ 95,84,97.8,1.5,1.3,0.4,0.5,1.9,2.1,3.2,3.8,3.0,3.7,2.7
268
+ 97,84,98.8,2.7,1.8,0.4,0.2,2.1,2.7,3.8,4.6,4.1,3.8,2.7
269
+ 96,80,98.5,2.0,1.6,0.6,0.5,1.4,2.0,3.3,3.9,2.9,3.5,2.6
270
+ 98,85,98.9,2.6,1.8,0.4,0.5,2.2,2.9,3.7,4.9,4.2,4.0,3.1
271
+ 97,83,99.0,2.5,1.6,0.3,0.1,2.2,2.6,3.8,4.7,4.1,3.7,3.5
272
+ 97,82,98.9,2.7,1.8,0.3,0.1,2.2,2.5,3.7,4.8,3.7,3.7,3.2
273
+ 96,83,99.0,2.6,1.8,0.3,0.2,2.1,2.5,3.8,4.8,4.2,3.6,3.2
274
+ 97,85,99.2,2.6,1.8,0.3,0.1,2.4,2.4,3.8,4.7,3.9,4.1,3.0
275
+ 97,85,99.1,2.7,1.8,0.3,0.1,1.9,2.6,3.8,4.9,4.1,4.0,3.3
276
+ 95,83,98.1,1.7,1.3,0.8,0.4,1.5,1.9,3.2,3.8,2.6,2.0,2.4
277
+ 95,84,98.9,2.4,1.4,0.6,0.5,1.9,2.7,3.2,4.0,2.6,3.5,3.0
278
+ 97,85,98.6,2.6,1.5,0.4,0.5,2.3,2.7,3.8,4.7,3.9,3.9,3.2
279
+ 98,84,98.9,2.7,1.8,0.3,0.1,2.1,2.7,3.7,4.9,3.9,3.9,3.2
280
+ 97,84,98.9,1.8,1.6,0.3,0.6,2.1,2.9,3.8,4.2,2.8,2.2,2.9
281
+ 97,86,99.2,2.7,1.8,0.4,0.2,1.9,2.9,3.8,4.8,3.9,4.1,2.8
282
+ 96,87,99.2,2.5,1.6,0.3,0.2,2.2,3.0,3.7,4.8,3.9,3.7,2.8
283
+ 95,83,98.1,1.6,1.1,0.6,0.1,1.9,2.5,2.9,4.1,4.0,3.8,2.6
284
+ 97,87,99.1,2.7,1.8,0.3,0.1,2.2,2.9,3.8,4.7,4.4,4.1,3.2
285
+ 98,83,99.0,2.7,1.8,0.3,0.1,2.1,2.7,3.8,4.8,3.7,4.0,3.0
286
+ 94,83,98.4,1.8,1.8,0.4,0.4,2.1,2.1,3.0,4.1,3.9,4.0,2.5
287
+ 97,87,98.9,1.8,1.6,0.3,0.2,2.0,2.9,3.7,4.7,2.6,3.9,3.1
288
+ 96,87,98.9,2.6,1.8,0.3,0.1,2.1,3.1,3.8,4.7,4.1,4.1,2.8
289
+ 97,86,99.2,2.7,1.8,0.3,0.1,2.1,2.5,3.8,4.9,3.7,3.8,3.0
290
+ 95,80,97.9,1.7,1.3,0.7,0.5,1.6,1.8,2.8,3.9,2.6,2.0,2.8
291
+ 94,80,98.3,1.7,1.8,0.8,0.6,1.4,1.9,3.8,4.0,2.7,3.4,2.9
292
+ 96,85,98.9,2.5,1.8,0.5,0.3,2.2,2.8,3.8,4.8,4.0,3.7,2.7
293
+ 94,80,97.9,1.7,1.6,0.4,0.4,1.4,2.0,3.0,4.0,2.7,3.5,2.5
294
+ 96,85,99.1,2.5,1.7,0.3,0.2,2.1,3.0,3.8,4.8,4.2,4.1,3.2
295
+ 97,84,98.8,2.5,1.6,0.5,0.2,2.2,2.8,3.7,4.3,4.2,3.6,3.3
296
+ 98,80,98.9,2.7,1.8,0.4,0.5,1.8,2.9,3.8,4.0,4.2,3.7,3.0
297
+ 96,80,98.6,2.6,1.2,0.8,0.4,1.6,1.9,3.2,4.0,2.6,2.4,2.4
298
+ 93,80,98.0,1.9,1.7,0.7,0.5,1.5,1.9,3.3,3.8,2.6,3.7,2.8
299
+ 98,83,99.2,2.5,1.8,0.3,0.1,2.0,2.8,3.8,4.9,3.8,3.8,3.3
300
+ 98,85,98.9,2.3,1.5,0.3,0.3,2.0,3.0,3.8,4.2,4.3,4.1,2.9
301
+ 98,82,98.8,2.7,1.8,0.3,0.1,2.3,2.5,3.8,4.9,4.2,3.8,3.2
302
+ 93,80,98.4,1.6,0.6,0.7,0.6,1.4,2.0,3.4,4.0,2.9,2.5,2.5
303
+ 97,83,99.1,2.7,1.8,0.3,0.1,2.2,2.8,3.8,4.7,4.0,4.1,3.3
304
+ 94,80,97.8,1.5,1.8,0.4,0.4,2.0,1.8,3.2,4.0,3.0,3.7,2.4
305
+ 96,80,98.3,1.7,0.9,0.4,0.5,1.6,1.9,3.2,4.0,2.7,3.9,2.7
306
+ 97,80,98.3,2.4,1.0,0.3,0.6,2.2,2.7,3.8,4.3,2.6,3.6,3.1
307
+ 94,80,98.3,1.9,1.7,0.7,0.5,1.6,1.8,3.2,3.6,2.6,3.8,2.6
308
+ 96,84,98.2,1.8,0.9,0.5,0.5,1.6,2.2,2.9,4.7,2.9,3.9,3.0
309
+ 93,80,98.3,1.8,1.3,0.8,0.4,1.4,1.8,3.2,3.5,2.6,3.8,2.3
310
+ 97,86,98.8,2.6,1.5,0.4,0.2,2.1,3.0,3.7,4.8,3.9,4.0,3.1
311
+ 97,86,99.0,2.7,1.8,0.3,0.1,2.2,3.0,3.8,4.9,4.2,4.1,3.5
312
+ 95,80,98.4,2.2,1.6,0.4,0.5,2.3,2.8,3.5,4.7,4.0,3.5,2.8
313
+ 97,85,98.8,2.6,1.8,0.3,0.4,2.3,2.8,3.8,4.9,3.9,3.7,2.7
314
+ 98,85,99.1,2.5,1.4,0.3,0.1,2.0,2.6,3.8,4.7,4.0,3.7,3.2
315
+ 97,83,98.9,2.7,1.8,0.3,0.4,2.3,3.0,3.8,3.9,4.0,3.6,3.4
316
+ 97,85,99.0,2.7,1.4,0.4,0.2,2.1,2.6,3.7,4.6,3.9,3.9,2.9
317
+ 98,83,98.8,2.7,1.8,0.3,0.1,2.3,2.6,3.8,4.7,3.9,3.9,3.1
318
+ 93,80,97.9,1.6,0.7,0.6,0.5,1.6,2.1,3.3,3.9,2.6,3.6,2.3
319
+ 94,84,98.1,2.4,1.8,0.3,0.5,1.7,2.8,3.0,4.1,2.6,3.7,2.6
320
+ 97,84,99.1,2.5,1.1,0.5,0.2,2.0,2.5,3.6,4.9,3.9,4.1,3.1
321
+ 93,80,97.8,1.4,1.4,0.9,0.6,1.4,1.8,3.1,3.9,2.6,2.0,2.4
322
+ 97,84,98.9,1.8,1.8,0.5,0.1,2.0,2.7,3.7,4.8,2.6,3.8,3.5
323
+ 98,80,98.7,2.6,1.8,0.5,0.2,2.1,2.5,3.8,4.6,3.7,2.2,2.8
324
+ 93,80,98.3,1.4,0.8,0.6,0.5,1.6,2.0,3.2,3.6,2.6,3.6,2.9
325
+ 96,85,98.9,2.7,1.8,0.3,0.2,2.1,2.9,3.7,4.9,4.2,3.4,3.3
326
+ 97,85,99.1,2.7,1.8,0.3,0.5,2.3,2.8,3.6,4.7,2.6,3.8,3.3
327
+ 98,86,99.0,2.5,1.3,0.4,0.3,2.1,2.9,3.8,4.6,4.2,4.0,2.9
328
+ 97,84,99.1,2.4,1.8,0.3,0.2,2.1,2.7,3.8,4.9,4.5,3.9,3.3
329
+ 93,80,98.2,2.1,1.0,0.7,0.5,1.4,1.8,3.2,3.7,2.6,3.6,2.3
330
+ 95,80,97.9,1.8,1.4,0.6,0.5,1.4,2.2,3.2,4.1,2.6,3.6,2.8
331
+ 95,84,99.1,1.9,1.8,0.4,0.2,2.1,2.2,3.8,4.1,2.7,3.9,2.6
332
+ 97,80,98.1,1.7,1.2,0.6,0.3,1.7,2.1,3.4,3.7,2.6,3.7,2.4
333
+ 98,84,98.3,1.9,1.1,0.5,0.5,2.2,3.0,3.2,3.5,2.6,3.7,3.1
334
+ 95,81,98.1,2.0,1.8,0.4,0.5,2.2,2.1,3.0,4.2,2.9,3.8,2.9
335
+ 97,84,98.8,2.1,1.5,0.5,0.4,2.0,2.9,3.5,4.0,2.6,3.6,2.9
336
+ 93,80,97.8,2.0,1.3,0.4,0.4,1.5,2.3,3.2,4.0,2.9,3.6,2.6
337
+ 97,80,99.1,2.0,1.2,0.4,0.2,2.1,2.7,3.8,4.0,2.7,4.1,3.4
338
+ 93,80,98.2,1.8,1.2,0.9,0.6,1.4,1.8,3.4,3.9,2.7,3.4,2.4
339
+ 97,84,99.0,2.6,1.8,0.3,0.1,2.2,2.8,3.8,4.9,4.0,3.9,3.3
340
+ 93,80,98.0,1.8,1.2,0.6,0.7,1.5,1.9,3.3,3.8,3.1,3.7,2.5
341
+ 98,88,99.0,2.7,1.8,0.3,0.2,2.3,2.9,3.8,4.8,4.1,3.8,3.3
342
+ 97,84,98.9,2.4,1.8,0.4,0.2,2.2,2.7,3.6,4.9,4.0,3.7,3.3
343
+ 98,83,99.0,2.6,1.7,0.4,0.1,2.1,2.4,3.8,4.8,4.1,3.6,3.1
344
+ 93,80,98.3,1.7,1.0,0.4,0.5,1.6,1.9,3.1,3.8,2.6,3.9,3.0
345
+ 97,84,98.8,2.7,1.1,0.4,0.2,2.1,3.0,3.8,4.9,4.3,4.0,3.2
346
+ 98,84,98.8,2.5,1.8,0.3,0.3,2.2,2.8,3.7,3.7,4.4,4.0,3.5
347
+ 94,84,99.0,2.6,1.6,0.3,0.3,2.1,2.9,3.8,4.8,4.0,2.6,2.5
348
+ 96,86,99.0,2.0,1.8,0.5,0.3,2.2,3.0,3.8,4.9,4.3,3.7,2.3
349
+ 93,80,98.3,2.1,1.4,0.8,0.5,1.4,2.1,3.3,3.7,2.6,3.6,2.3
350
+ 97,85,99.0,2.2,1.6,0.3,0.2,2.1,2.6,3.8,4.7,3.9,4.1,3.5
351
+ 98,84,98.8,2.7,1.6,0.4,0.4,2.0,3.0,3.8,4.8,3.8,3.4,2.9
352
+ 97,84,99.0,2.5,1.8,0.4,0.2,2.1,2.7,3.7,3.6,3.8,3.7,3.4
353
+ 98,83,99.1,1.9,1.8,0.4,0.2,2.2,2.8,3.2,4.6,3.9,3.9,2.6
354
+ 93,80,98.0,1.6,0.9,0.9,0.5,1.5,1.8,3.5,3.5,2.8,2.5,2.3
355
+ 93,80,97.9,1.7,1.4,0.9,0.4,1.4,1.8,3.4,3.5,2.6,3.8,2.3
356
+ 93,80,98.2,1.6,1.5,0.7,0.6,1.6,1.8,3.2,4.0,2.6,3.5,2.6
357
+ 97,83,99.0,2.7,1.8,0.4,0.1,2.1,3.0,3.8,4.9,3.9,3.7,3.2
358
+ 95,83,98.4,1.4,1.3,0.6,0.5,1.4,2.1,3.4,3.8,2.7,3.8,2.7
359
+ 98,85,99.1,2.5,1.8,0.4,0.2,2.2,3.0,3.8,4.8,3.8,3.5,3.5
360
+ 97,87,98.8,2.5,1.7,0.5,0.3,2.2,2.8,3.8,4.4,3.9,2.1,2.8
361
+ 97,83,98.8,2.7,1.8,0.3,0.2,2.3,3.0,3.8,4.7,4.2,4.1,3.4
362
+ 97,83,99.2,2.7,1.8,0.3,0.1,2.3,2.4,3.8,4.9,4.6,4.1,3.3
363
+ 97,84,98.8,2.5,1.8,0.4,0.5,2.3,2.9,3.8,4.7,4.3,3.9,2.5
364
+ 97,87,99.1,2.5,1.5,0.3,0.2,1.9,2.8,3.8,3.9,3.7,4.1,3.2
365
+ 97,87,99.2,2.7,1.8,0.3,0.1,2.3,2.8,3.8,4.9,4.0,4.1,3.3
366
+ 93,80,98.1,1.5,1.0,0.8,0.4,1.5,1.8,3.1,3.8,2.6,3.6,2.5
367
+ 93,80,98.2,1.7,1.2,0.7,0.6,1.4,2.1,3.2,4.1,2.6,3.8,2.8
368
+ 96,85,97.9,2.4,1.7,0.4,0.1,2.2,2.9,3.1,4.7,3.8,2.2,3.0
369
+ 98,85,99.2,2.4,1.8,0.5,0.4,2.1,2.8,3.8,4.2,4.0,3.5,3.3
370
+ 93,84,99.1,2.5,1.7,0.6,0.5,2.0,2.2,3.8,4.7,2.8,3.6,2.9
371
+ 97,85,99.0,2.6,1.7,0.3,0.6,2.1,2.9,3.8,4.9,2.8,3.7,2.9
372
+ 93,80,98.3,1.9,0.9,0.9,0.5,1.4,1.8,3.4,3.8,2.9,3.6,2.3
373
+ 94,82,98.0,1.9,1.5,0.4,0.2,2.1,2.0,3.0,3.8,2.8,2.0,2.5
374
+ 94,80,98.2,1.9,0.9,0.8,0.1,1.5,1.8,3.1,3.9,2.7,3.7,2.5
375
+ 97,84,99.2,2.5,1.8,0.4,0.2,2.0,2.9,3.8,4.9,3.8,3.8,3.2
376
+ 97,83,99.2,2.7,1.8,0.3,0.4,2.2,2.9,3.8,4.7,4.1,4.0,3.2
377
+ 97,85,99.0,2.6,1.8,0.3,0.4,2.1,2.7,3.8,4.8,4.1,3.8,3.5
378
+ 94,84,98.5,2.1,1.6,0.5,0.5,2.0,2.1,3.4,3.8,2.8,3.9,2.9
379
+ 97,83,99.0,2.7,1.8,0.5,0.1,2.0,2.8,3.8,4.9,3.9,3.6,3.1
380
+ 95,80,98.2,2.0,1.2,0.8,0.2,1.4,2.0,3.3,3.8,3.0,3.8,2.8
381
+ 98,83,98.8,2.6,1.3,0.4,0.4,2.2,2.8,3.8,4.4,4.2,2.8,2.4
382
+ 97,86,98.4,2.7,1.7,0.3,0.5,2.0,3.0,3.8,4.9,2.6,3.5,3.0
383
+ 97,86,99.2,2.7,1.8,0.3,0.1,2.3,2.9,3.8,4.9,3.9,4.0,3.2
384
+ 97,85,99.0,2.7,1.7,0.3,0.2,2.2,3.0,3.8,4.9,4.0,3.8,3.2
385
+ 97,87,98.9,2.7,1.8,0.3,0.1,2.2,2.8,3.8,4.8,4.2,3.8,3.2
386
+ 93,80,98.5,2.2,1.2,0.8,0.5,1.4,1.8,2.8,3.8,2.6,3.8,2.3
387
+ 98,80,98.0,1.8,1.8,0.5,0.6,1.5,2.1,3.3,4.3,2.7,3.6,2.5
388
+ 95,80,98.0,2.0,1.2,0.8,0.5,1.6,1.9,3.4,3.6,2.6,2.0,2.6
389
+ 96,85,99.1,2.6,1.8,0.3,0.5,2.2,2.6,3.8,4.3,4.0,4.0,3.2
390
+ 96,84,99.2,2.6,1.7,0.4,0.2,1.9,3.1,3.8,4.8,3.9,3.7,2.6
391
+ 94,80,98.2,1.6,1.8,0.5,0.4,1.6,2.0,3.4,3.7,2.6,3.9,2.6
392
+ 97,86,98.5,2.4,1.8,0.4,0.2,2.3,2.8,3.6,4.8,3.8,3.9,2.9
393
+ 98,85,98.4,2.7,1.7,0.5,0.4,1.6,2.7,3.6,3.8,3.8,3.6,3.2
394
+ 94,80,99.0,2.7,1.8,0.5,0.5,2.1,2.9,3.8,4.3,4.0,3.9,3.3
395
+ 98,86,98.9,2.6,1.3,0.4,0.2,2.2,3.1,3.8,4.2,4.0,3.7,2.8
396
+ 95,80,98.2,1.8,1.2,0.5,0.5,1.6,1.9,3.7,4.0,2.8,3.7,2.4
397
+ 97,80,98.0,1.9,1.6,0.7,0.6,1.6,2.7,3.2,3.9,2.6,3.9,2.4
398
+ 97,84,99.0,2.0,1.8,0.4,0.4,2.2,2.9,3.8,4.7,3.9,3.5,2.5
399
+ 95,80,98.7,2.3,1.4,0.4,0.6,2.2,3.0,3.1,4.4,4.2,3.7,2.5
400
+ 94,85,98.3,2.0,0.9,0.6,0.6,1.6,1.8,3.2,4.1,2.6,3.6,2.5
401
+ 97,84,98.8,2.7,1.8,0.3,0.1,2.2,2.7,3.7,4.9,3.8,3.6,3.2
402
+ 97,85,98.9,2.7,1.8,0.3,0.1,2.2,2.8,3.8,4.9,3.8,4.0,3.4
403
+ 94,80,98.1,2.0,1.1,0.9,0.6,1.4,2.1,3.5,4.0,2.6,3.9,2.8
404
+ 95,84,99.0,2.5,1.5,0.4,0.3,2.1,2.9,2.9,4.2,2.7,3.5,3.0
405
+ 97,84,97.9,1.5,1.4,0.5,0.6,1.5,1.8,3.1,4.0,2.6,3.6,2.7
406
+ 94,84,98.2,2.4,1.8,0.6,0.3,1.5,2.5,3.6,4.0,4.0,4.1,2.7
407
+ 96,80,98.3,1.8,1.8,0.5,0.5,1.4,2.2,3.3,4.0,2.6,2.1,2.5
408
+ 97,80,98.9,1.7,1.6,0.9,0.6,2.2,1.9,3.3,3.9,2.8,3.8,2.3
409
+ 97,84,98.8,2.3,1.6,0.3,0.4,2.3,2.9,3.8,4.4,4.0,3.5,3.4
410
+ 97,84,99.1,2.6,1.2,0.3,0.2,1.9,1.8,3.8,4.9,2.6,3.7,2.6
411
+ 98,83,99.2,2.7,1.8,0.4,0.1,2.1,2.5,3.8,4.8,4.1,3.8,3.0
412
+ 97,85,98.6,2.6,1.7,0.3,0.2,2.2,2.7,3.7,4.8,3.8,3.7,3.3
413
+ 98,84,98.9,2.7,1.8,0.3,0.2,2.0,2.6,3.8,4.8,3.8,4.0,3.2
414
+ 93,80,98.2,1.9,1.7,0.6,0.5,1.6,2.1,2.9,4.1,2.6,2.3,2.6
415
+ 98,83,98.8,2.3,1.8,0.5,0.4,2.1,3.1,3.7,4.7,4.3,4.0,2.3
416
+ 97,85,98.6,2.4,1.4,0.4,0.1,2.1,2.7,3.7,4.6,4.4,3.9,2.7
417
+ 98,84,99.0,2.6,1.8,0.3,0.1,2.1,2.9,3.8,4.8,4.1,3.8,3.3
418
+ 95,80,98.4,1.8,1.2,0.5,0.5,1.4,2.1,3.1,3.6,2.6,3.7,2.7
419
+ 98,85,99.2,1.8,1.6,0.4,0.3,2.1,2.8,3.8,3.7,4.1,3.7,2.7
420
+ 96,80,98.4,2.4,1.3,0.3,0.1,2.2,2.8,3.8,4.8,2.7,3.9,2.9
421
+ 97,84,99.1,2.4,1.8,0.3,0.1,2.4,3.0,3.8,4.6,4.1,4.0,2.9
422
+ 97,86,99.0,2.4,1.8,0.3,0.2,2.0,3.0,3.8,4.9,4.2,3.8,3.2
423
+ 95,85,99.0,2.6,1.5,0.3,0.2,2.1,3.0,3.8,4.8,4.3,3.9,3.3
424
+ 95,80,99.2,1.9,1.5,0.6,0.5,2.0,2.9,3.3,4.0,2.7,4.1,2.9
425
+ 98,84,98.2,1.6,1.8,0.4,0.5,2.2,2.8,3.8,4.7,3.0,4.0,2.8
426
+ 98,85,98.8,2.7,1.6,0.3,0.5,2.0,2.5,3.8,4.8,3.9,3.7,3.2
427
+ 97,80,98.7,2.3,1.6,0.5,0.3,2.1,1.9,3.8,4.4,4.1,2.0,2.7
428
+ 97,84,99.0,2.6,1.8,0.3,0.2,2.2,2.8,3.8,4.8,4.1,3.8,3.4
429
+ 98,85,99.1,2.4,1.8,0.5,0.2,1.8,2.9,3.8,4.6,3.9,3.5,3.1
430
+ 95,83,98.3,2.1,1.8,0.5,0.6,1.4,2.0,2.9,3.5,2.7,3.8,2.6
431
+ 97,85,98.8,2.7,1.8,0.3,0.1,2.4,2.8,3.8,4.7,4.1,3.5,3.4
432
+ 96,84,98.9,2.6,1.8,0.4,0.1,2.1,2.8,3.8,4.8,4.2,3.7,3.1
433
+ 95,80,98.8,1.6,1.8,0.4,0.4,2.1,2.7,3.8,3.5,2.6,3.5,2.5
434
+ 95,80,97.9,2.0,1.5,0.4,0.5,1.6,2.0,3.8,3.6,4.1,3.9,2.8
435
+ 96,85,98.9,2.7,1.8,0.3,0.5,2.3,2.8,3.8,4.9,4.4,4.1,3.2
436
+ 97,85,99.0,1.9,1.8,0.4,0.1,2.1,2.8,3.6,4.9,3.9,3.6,3.1
437
+ 97,85,98.7,2.4,0.9,0.5,0.5,1.5,2.9,3.8,4.1,2.7,3.8,2.7
438
+ 97,86,98.7,1.9,1.8,0.3,0.2,1.8,2.0,3.2,4.2,3.0,3.5,2.8
439
+ 93,80,98.2,2.1,0.8,0.7,0.5,1.6,1.9,2.9,4.1,2.6,3.8,2.3
440
+ 96,86,99.1,1.9,1.6,0.5,0.2,2.3,3.1,3.0,4.8,2.9,3.8,2.8
441
+ 97,80,99.0,2.6,1.8,0.4,0.5,2.1,2.7,3.7,4.0,3.8,2.6,3.4
442
+ 94,80,98.0,1.8,1.0,0.6,0.4,1.5,2.1,3.1,4.4,2.8,3.9,2.7
443
+ 93,80,98.1,1.6,1.2,0.7,0.6,1.6,2.0,3.1,3.8,2.8,3.8,2.3
444
+ 98,85,98.9,2.5,1.5,0.3,0.1,1.5,2.7,3.8,4.9,2.7,3.7,2.6
445
+ 97,84,98.9,2.7,1.8,0.3,0.1,2.0,2.8,3.8,4.7,3.9,3.9,3.3
446
+ 97,85,98.8,2.4,1.8,0.3,0.3,2.2,2.8,3.8,4.5,4.1,3.8,2.9
447
+ 94,80,97.9,1.7,1.2,0.6,0.6,1.4,1.8,3.1,4.0,2.6,3.9,2.7
448
+ 94,83,99.1,2.7,1.7,0.5,0.2,2.1,2.7,3.7,4.7,3.9,3.7,3.2
449
+ 97,86,98.1,1.8,0.9,0.3,0.5,2.1,2.8,3.8,3.9,2.7,2.1,2.5
450
+ 94,80,98.6,1.8,1.2,0.4,0.5,1.4,1.8,3.1,4.0,2.7,3.5,2.6
451
+ 93,83,98.2,2.1,1.3,0.7,0.5,1.6,1.9,3.5,3.9,2.7,3.3,2.5
452
+ 97,83,98.9,2.7,1.8,0.3,0.1,2.2,2.6,3.8,4.8,3.9,4.0,3.2
453
+ 93,80,98.3,2.0,1.0,0.7,0.5,1.4,1.8,3.2,3.7,2.7,3.7,2.5
454
+ 94,85,99.1,2.4,1.6,0.3,0.2,2.2,2.6,3.8,4.7,4.0,3.7,2.4
455
+ 93,83,98.8,1.8,1.1,0.5,0.1,1.6,2.6,3.3,4.1,4.1,3.7,2.6
456
+ 97,83,99.2,2.3,1.8,0.3,0.2,2.1,2.6,3.8,4.9,4.1,4.0,2.6
457
+ 95,80,98.4,1.4,1.1,0.5,0.5,1.4,1.9,3.1,3.9,2.8,2.7,2.8
458
+ 96,84,98.4,2.4,1.6,0.3,0.5,1.6,2.9,3.2,4.3,2.7,4.1,2.6
459
+ 93,83,98.1,1.9,0.9,0.5,0.6,1.4,1.9,3.2,3.7,2.7,3.5,2.8
460
+ 97,84,98.8,2.7,1.8,0.3,0.3,2.2,2.7,3.6,4.9,4.1,3.8,3.2
461
+ 97,84,99.2,2.5,1.8,0.3,0.2,2.0,2.7,3.8,4.9,4.1,3.9,3.1
462
+ 97,84,99.1,2.7,1.8,0.5,0.2,2.0,2.7,3.8,4.6,4.2,4.0,3.1
463
+ 94,84,98.1,1.8,1.0,0.6,0.7,1.5,1.8,3.2,3.8,2.6,2.9,2.6
464
+ 97,86,99.2,2.7,1.8,0.3,0.1,2.2,2.7,3.8,4.9,3.8,4.1,3.5
465
+ 98,85,99.1,2.7,1.8,0.3,0.1,2.4,2.7,3.8,4.9,3.9,4.1,3.5
466
+ 93,80,98.1,1.5,1.4,0.7,0.5,1.4,1.8,3.2,3.6,2.7,3.6,2.5
467
+ 96,80,98.3,1.6,1.4,0.6,0.6,1.4,1.8,3.3,3.6,2.6,3.7,2.6
468
+ 95,80,98.1,1.8,1.1,0.8,0.6,1.8,2.1,3.0,4.3,2.6,3.7,2.4
469
+ 95,83,98.8,2.5,1.3,0.3,0.4,1.8,2.6,3.8,4.3,4.3,3.8,2.5
470
+ 97,84,98.4,2.7,1.5,0.5,0.4,2.1,2.9,3.8,3.8,3.8,3.6,2.8
471
+ 97,84,98.8,2.7,1.8,0.5,0.1,2.3,2.8,3.8,4.8,4.1,4.0,3.4
472
+ 97,85,99.0,2.7,1.5,0.3,0.1,2.2,3.1,3.8,4.9,4.0,3.9,3.2
473
+ 94,83,98.9,2.2,1.6,0.5,0.3,2.2,2.5,3.8,4.1,4.0,3.4,2.5
474
+ 97,86,99.0,2.5,1.3,0.4,0.2,2.3,2.6,3.8,4.4,2.7,3.8,3.2
475
+ 96,80,98.2,2.0,1.5,0.7,0.5,1.5,1.9,3.1,4.2,2.7,3.9,2.3
476
+ 98,84,98.1,2.6,1.4,0.3,0.5,2.1,2.8,3.8,4.6,3.8,3.8,2.9
477
+ 98,83,99.1,2.6,1.8,0.4,0.1,2.2,2.7,3.8,4.6,4.2,3.8,3.3
478
+ 98,84,99.1,2.7,1.8,0.3,0.2,2.2,3.0,3.8,4.7,3.9,3.7,3.3
479
+ 97,85,99.2,2.6,1.8,0.3,0.1,2.4,2.9,3.8,4.9,3.9,4.1,3.2
480
+ 97,80,98.0,1.7,1.0,0.5,0.5,1.5,2.0,3.2,3.8,2.6,2.2,3.1
481
+ 93,80,98.2,1.7,1.7,0.8,0.4,1.5,1.8,3.3,3.9,2.6,3.4,2.4
482
+ 97,84,99.0,2.5,1.8,0.3,0.1,2.1,2.5,3.6,4.8,3.9,3.8,3.1
483
+ 96,83,98.0,1.7,1.5,0.9,0.4,1.6,2.7,3.1,4.3,2.6,3.7,2.8
484
+ 94,80,98.3,1.7,1.6,0.8,0.6,1.4,1.8,3.3,3.5,2.7,2.0,2.6
485
+ 93,80,98.0,1.9,1.4,0.5,0.6,1.7,1.9,3.3,3.9,2.8,3.7,2.6
486
+ 98,84,98.8,2.5,1.7,0.3,0.2,2.3,2.8,3.8,4.9,4.2,4.0,3.2
487
+ 97,83,99.2,2.4,1.8,0.5,0.1,2.3,2.7,3.8,4.7,4.4,3.9,3.5
488
+ 98,84,99.2,2.7,1.8,0.3,0.1,2.1,2.5,3.8,4.7,4.0,3.8,3.3
489
+ 97,84,99.0,2.7,1.7,0.3,0.4,2.2,2.7,3.8,4.5,3.9,3.6,3.5
490
+ 93,80,98.0,1.5,1.2,0.8,0.5,1.4,1.8,3.4,3.5,2.7,2.2,2.3
491
+ 98,85,98.6,2.6,1.8,0.4,0.1,2.1,2.7,3.8,4.9,4.5,3.8,3.3
492
+ 95,80,98.9,1.5,1.7,0.4,0.6,1.4,2.8,3.2,3.8,2.6,3.4,2.9
493
+ 97,84,99.0,1.8,1.5,0.4,0.2,2.3,2.9,3.8,4.8,4.0,3.9,2.8
494
+ 94,84,99.2,2.7,1.7,0.3,0.2,2.1,2.6,3.8,4.6,3.9,3.9,3.2
495
+ 98,84,98.9,2.7,1.7,0.4,0.2,2.1,2.8,3.7,4.9,3.9,3.9,3.2
496
+ 97,85,99.0,1.9,1.8,0.4,0.3,2.2,2.8,3.8,3.9,4.1,4.0,2.8
497
+ 98,84,99.1,2.7,1.8,0.3,0.1,2.0,2.6,3.8,4.8,3.9,3.7,3.1
498
+ 93,80,98.6,1.6,1.3,0.6,0.6,1.6,2.2,3.5,3.9,2.9,4.1,2.9
499
+ 98,85,99.0,2.6,1.8,0.3,0.2,2.2,2.8,3.8,4.7,4.2,4.0,3.3
500
+ 98,84,98.9,2.7,1.7,0.3,0.1,2.2,2.8,3.8,4.7,2.6,3.8,2.9
501
+ 97,84,98.3,2.5,1.8,0.4,0.4,2.0,2.3,3.8,4.6,4.2,3.9,2.7
emo.csv ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ spO2,heart-rate,body-temperature,anger,fear,sadness,disgust,surprise,anticipation,trust,joy,stress,anxiety,depression
2
+ 98,88,99.0,2.5,1.6,0.4,0.3,2.2,2.8,3.6,4.8,4.5,4.0,3.2
3
+ 98,84,98.4,1.9,1.3,0.5,0.4,2.1,2.6,3.2,4.2,3.0,3.7,3.1
4
+ 96,88,99.0,1.4,0.5,0.5,0.3,1.6,1.9,2.6,3.5,2.6,2.0,3.2
5
+ 98,88,98.6,2.2,1.4,0.4,0.1,2.2,2.8,3.4,4.6,4.3,3.6,2.7
6
+ 97,86,98.8,2.3,1.5,0.6,0.2,2.0,2.7,3.5,4.5,4.2,3.5,3.0
7
+ 99,90,99.2,2.7,1.8,0.3,0.5,2.3,3.0,3.7,4.9,4.7,4.1,3.5
8
+ 95,85,98.2,1.7,1.0,0.7,0.4,1.8,2.3,3.0,4.0,3.3,3.9,2.8
9
+ 97,89,98.9,2.1,1.2,0.6,0.3,2.1,2.9,3.6,4.7,4.4,3.8,3.3
10
+ 98,87,98.5,2.0,1.1,0.4,0.2,2.0,2.5,3.3,4.3,4.0,3.4,2.9
11
+ 96,90,98.7,2.4,1.7,0.5,0.6,2.4,3.1,3.8,4.8,4.6,4.0,3.4
12
+ 95,82,98.0,1.5,0.8,0.8,0.6,1.5,2.0,2.7,3.8,3.1,3.6,2.5
13
+ 97,80,97.8,1.3,0.7,0.9,0.7,1.4,1.8,2.5,3.7,2.9,3.4,2.3
14
+ 93,85,98.1,1.8,1.1,0.6,0.5,1.7,2.2,2.9,4.1,3.4,3.8,2.7
emotion_model/fingerprint.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0804be7521d4a151453b30271b7d941f8c3623e69c3fe2913089777989a9cbb
3
+ size 57
emotion_model/keras_metadata.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57faac85e3fa64bf2883be7640054bf4b4814ddfce63abc30dcd1575b57136ab
3
+ size 8170
emotion_model/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe72c568b8a44ae0b65f5085285762598e162b7fd7745d925a062b04a2c2f833
3
+ size 92028
emotion_model/variables/variables.data-00000-of-00001 ADDED
Binary file (64.8 kB). View file
 
emotion_model/variables/variables.index ADDED
Binary file (1.7 kB). View file
 
model.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from sklearn.model_selection import train_test_split
3
+ from sklearn.preprocessing import MinMaxScaler
4
+ import tensorflow as tf
5
+ # Load the dataset
6
+ data = pd.read_csv('emo-final.csv')
7
+
8
+ # Separate features (X) and target labels (y)
9
+ X = data[['spO2', 'heart-rate', 'body-temperature']]
10
+ y = data[['anger', 'fear', 'sadness', 'disgust', 'surprise', 'anticipation', 'trust', 'joy']]
11
+
12
+ # Split the dataset into training and testing sets
13
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
14
+
15
+ # Normalize features using Min-Max scaling
16
+ scaler = MinMaxScaler()
17
+ X_train_scaled = scaler.fit_transform(X_train)
18
+ X_test_scaled = scaler.transform(X_test)
19
+ model = tf.keras.Sequential([
20
+ tf.keras.layers.Dense(64, activation='relu', input_shape=(3,)),
21
+ tf.keras.layers.Dense(64, activation='relu'),
22
+ tf.keras.layers.Dense(8, activation='softmax') # Output layer with 8 units for 8 emotions
23
+ ])
24
+
25
+ # Compile the model
26
+ model.compile(optimizer='adam', loss='mse')
27
+
28
+ # Train the model
29
+ model.fit(X_train_scaled, y_train, epochs=50, batch_size=32, validation_data=(X_test_scaled, y_test))
30
+
31
+ # Save the trained model
32
+ model.save('emotion_model')