Spaces:
Runtime error
Runtime error
File size: 13,902 Bytes
29c5a57 ef90d7b 29c5a57 3dcb153 22aea13 29c5a57 6868abf 29c5a57 4949120 29c5a57 21c4a11 29c5a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import numpy as np
# import gradio
import torch
from transformers import BertTokenizer
import argparse
import gradio as gr
import time
from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.modeling import BirdModel
show_num = 9
max_words = 32
video_path_zh = "features/Chinese_batch_visual_output_list.npy"
frame_path_zh = "features/Chinese_batch_frame_output_list.npy"
video_fea_zh = np.load(video_path_zh)
video_fea_zh = torch.from_numpy(video_fea_zh)
frame_fea_zh = np.load(frame_path_zh)
frame_fea_zh = torch.from_numpy(frame_fea_zh)
video_path_en = "features/English_batch_visual_output_list.npy"
frame_path_en = "features/English_batch_frame_output_list.npy"
video_fea_en = np.load(video_path_en)
video_fea_en = torch.from_numpy(video_fea_en)
frame_fea_en = np.load(frame_path_en)
frame_fea_en = torch.from_numpy(frame_fea_en)
test_path = "test_list.txt"
# video_dir = "test1500_400_400/"
video_dir = "test1500/"
with open(test_path, 'r', encoding='utf8') as f_list:
lines = f_list.readlines()
video_ids = [itm.strip() + ".mp4" for itm in lines]
def get_videoname(idx):
videoname = []
videopath = []
for i in idx:
videoname.append(video_ids[i])
path = video_dir + video_ids[i]
videopath.append(path)
return videoname, videopath
def get_text(caption, tokenizer):
# tokenize word
words = tokenizer.tokenize(caption)
# add cls token
words = ["<|startoftext|>"] + words
total_length_with_CLS = max_words - 1
if len(words) > total_length_with_CLS:
words = words[:total_length_with_CLS]
# add end token
words = words + ["<|endoftext|>"]
# convert token to id according to the vocab
input_ids = tokenizer.convert_tokens_to_ids(words)
# add zeros for feature of the same length
input_mask = [1] * len(input_ids)
while len(input_ids) < max_words:
input_ids.append(0)
input_mask.append(0)
# ensure the length of feature to be equal with max words
assert len(input_ids) == max_words
assert len(input_mask) == max_words
pairs_text = np.array(input_ids).reshape(-1, max_words)
pairs_text = torch.from_numpy(pairs_text)
pairs_mask = np.array(input_mask).reshape(-1, max_words)
pairs_mask = torch.from_numpy(pairs_mask)
return pairs_text, pairs_mask
def get_args(description='Retrieval Task'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--do_params", action='store_true', help="text the params of the model.")
parser.add_argument("--use_frame_fea", action='store_true', help="whether use frame feature matching text")
parser.add_argument('--task', type=str, default="retrieval", choices=["retrieval_VT", "retrieval"],
help="choose downstream task.")
parser.add_argument('--dataset', type=str, default="bird", choices=["bird", "msrvtt", "vatex", "msvd"],
help="choose dataset.")
parser.add_argument('--num_thread_reader', type=int, default=1, help='')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--text_lr', type=float, default=0.00001, help='text encoder learning rate')
parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=3500, help='batch size eval')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--weight_decay', type=float, default=0.2, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=32, help='')
parser.add_argument('--max_frames', type=int, default=12, help='')
parser.add_argument('--top_frames', type=int, default=3, help='')
parser.add_argument('--frame_sample', type=str, default="uniform", choices=["uniform", "random", "uniform_random"],
help='frame sample strategy')
parser.add_argument('--frame_sample_len', type=str, default="fix", choices=["dynamic", "fix"],
help='use dynamic frame length of fix frame length')
parser.add_argument('--language', type=str, default="chinese", choices=["chinese", "english"],
help='language for text encoder')
parser.add_argument('--use_temp', action='store_true', help='whether to use temporal transformer')
parser.add_argument("--logdir", default=None, type=str, required=False, help="log dir for tensorboardX writer")
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--pretrained_text", default="hfl/chinese-roberta-wwm-ext", type=str, required=False, help="pretrained_text")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--enable_amp', action='store_true', help="whether to use pytorch amp")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument("--rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=1., help='coefficient for bert branch.')
args = parser.parse_args()
# Check paramenters
args.do_eval = True
args.use_frame_fea = True
args.use_temp = True
return args
def init_model(language):
time1 = time.time()
args = get_args()
args.language = language
if language == "chinese":
model_path = "models/Chinese_vatex.bin"
tokenizer = BertTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext")
elif language == "english":
model_path = "models/English_vatex.bin"
tokenizer = ClipTokenizer()
else:
raise Exception("language should be Chinese or English!")
model_state_dict = torch.load(model_path, map_location='cpu')
cross_model = "cross-base"
model = BirdModel.from_pretrained(cross_model, state_dict=model_state_dict, task_config=args)
device = torch.device("cpu")
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
print("language={}".format(language))
print("init model time: {}".format(time.time() - time1))
print("device:{}".format(device))
return model, tokenizer
model_zh, tokenizer_zh = init_model(language="chinese")
model_en, tokenizer_en = init_model(language="english")
def t2v_search_zh(text):
with torch.no_grad():
time1 = time.time()
text_ids, text_mask = get_text(text, tokenizer_zh)
print("get_text time: {}".format(time.time() - time1))
time1 = time.time()
text_fea_zh = model_zh.text_encoder(text_ids, text_mask)
print("text_encoder time: {}".format(time.time() - time1))
# print("text_fea.shape:{}".format(text_fea.shape))
# print("video_fea.shape:{}".format(video_fea.shape))
# print("frame_fea.shape:{}".format(frame_fea.shape))
time1 = time.time()
sim_video = model_zh.loose_similarity(text_fea_zh, video_fea_zh)
# print("sim_video.shape:{}".format(sim_video.shape))
sim_frame = model_zh.loose_similarity(text_fea_zh, frame_fea_zh)
# print("sim_frame.shape:{}".format(sim_frame.shape))
sim_frame = torch.topk(sim_frame, k=model_zh.top_frames, dim=1)[0]
sim_frame = torch.mean(sim_frame, dim=1)
sim = sim_video + sim_frame
value, index = sim.topk(show_num, dim=0, largest=True, sorted=True)
# value, index = sim_video.topk(show_num, dim=0, largest=True, sorted=True)
print("calculate_similarity time: {}".format(time.time() - time1))
print("value:{}".format(value))
print("index:{}".format(index))
videoname, videopath = get_videoname(index)
print("videoname:{}".format(videoname))
print("videopath:{}".format(videopath))
return videopath
def t2v_search_en(text):
with torch.no_grad():
time1 = time.time()
text_ids, text_mask = get_text(text, tokenizer_en)
print("get_text time: {}".format(time.time() - time1))
time1 = time.time()
text_fea_en = model_en.text_encoder(text_ids, text_mask)
print("text_encoder time: {}".format(time.time() - time1))
# print("text_fea.shape:{}".format(text_fea.shape))
# print("video_fea.shape:{}".format(video_fea.shape))
# print("frame_fea.shape:{}".format(frame_fea.shape))
time1 = time.time()
sim_video = model_en.loose_similarity(text_fea_en, video_fea_en)
# print("sim_video.shape:{}".format(sim_video.shape))
sim_frame = model_en.loose_similarity(text_fea_en, frame_fea_en)
# print("sim_frame.shape:{}".format(sim_frame.shape))
sim_frame = torch.topk(sim_frame, k=model_en.top_frames, dim=1)[0]
sim_frame = torch.mean(sim_frame, dim=1)
sim = sim_video + sim_frame
value, index = sim.topk(show_num, dim=0, largest=True, sorted=True)
# value, index = sim_video.topk(show_num, dim=0, largest=True, sorted=True)
print("calculate_similarity time: {}".format(time.time() - time1))
print("value:{}".format(value))
print("index:{}".format(index))
videoname, videopath = get_videoname(index)
print("videoname:{}".format(videoname))
print("videopath:{}".format(videopath))
return videopath
def hello_world(name):
return "hello world, my name is " + name + "!"
def search_demo():
with gr.Blocks() as demo:
gr.Markdown("# <div align='center'>HMMC中英文本-视频检索 \
<a style='font-size:18px;color: #000000' href='https://github.com/cheetah003/HMMC'> Github </div>")
demo.title = "HMMC中英文本-视频检索"
with gr.Tab("中文"):
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
input_text = gr.Textbox(
label="输入文本",
show_label=False,
max_lines=1,
placeholder="请输入检索文本...",
).style(
container=False,
)
btn = gr.Button("搜索").style(full_width=False)
with gr.Column(variant="panel", scale=2):
with gr.Row(variant="compact"):
videos_top = [gr.Video(
format="mp4", label="视频 "+str(i+1),
).style(height=300, width=300) for i in range(3)]
with gr.Column(variant="panel", scale=1):
with gr.Row(variant="compact"):
videos_rest = [gr.Video(
format="mp4", label="视频 "+str(i),
).style(height=150, width=150) for i in range(3, show_num)]
searched_videos = videos_top + videos_rest
btn.click(t2v_search_zh, inputs=input_text, outputs=searched_videos)
with gr.Tab("English"):
with gr.Column(variant="panel"):
with gr.Row(variant="compact"):
input_text = gr.Textbox(
label="input text",
show_label=False,
max_lines=1,
placeholder="Please input text to search...",
).style(
container=False,
)
btn = gr.Button("Search").style(full_width=False)
with gr.Column(variant="panel", scale=2):
with gr.Row(variant="compact"):
videos_top = [gr.Video(
format="mp4", label="video " + str(i+1),
).style(height=300, width=300) for i in range(3)]
with gr.Column(variant="panel", scale=1):
with gr.Row(variant="compact"):
videos_rest = [gr.Video(
format="mp4", label="video " + str(i+1),
).style(height=150, width=150) for i in range(3, show_num)]
searched_videos = videos_top + videos_rest
btn.click(t2v_search_en, inputs=input_text, outputs=searched_videos)
demo.launch()
if __name__ == '__main__':
search_demo()
# text = "两个男人正在随着音乐跳舞,他们正在努力做着macarena舞蹈的动作。"
# t2v_search(text)
|