File size: 13,902 Bytes
29c5a57
 
 
 
 
 
 
 
 
 
 
ef90d7b
29c5a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dcb153
22aea13
29c5a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6868abf
29c5a57
 
 
 
 
4949120
29c5a57
 
 
 
 
21c4a11
29c5a57
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import numpy as np
# import gradio
import torch
from transformers import BertTokenizer
import argparse
import gradio as gr
import time

from modules.tokenization_clip import SimpleTokenizer as ClipTokenizer
from modules.modeling import BirdModel

show_num = 9
max_words = 32
video_path_zh = "features/Chinese_batch_visual_output_list.npy"
frame_path_zh = "features/Chinese_batch_frame_output_list.npy"
video_fea_zh = np.load(video_path_zh)
video_fea_zh = torch.from_numpy(video_fea_zh)
frame_fea_zh = np.load(frame_path_zh)
frame_fea_zh = torch.from_numpy(frame_fea_zh)

video_path_en = "features/English_batch_visual_output_list.npy"
frame_path_en = "features/English_batch_frame_output_list.npy"
video_fea_en = np.load(video_path_en)
video_fea_en = torch.from_numpy(video_fea_en)
frame_fea_en = np.load(frame_path_en)
frame_fea_en = torch.from_numpy(frame_fea_en)

test_path = "test_list.txt"
# video_dir = "test1500_400_400/"
video_dir = "test1500/"

with open(test_path, 'r', encoding='utf8') as f_list:
    lines = f_list.readlines()
    video_ids = [itm.strip() + ".mp4" for itm in lines]


def get_videoname(idx):
    videoname = []
    videopath = []
    for i in idx:
        videoname.append(video_ids[i])
        path = video_dir + video_ids[i]
        videopath.append(path)
    return videoname, videopath


def get_text(caption, tokenizer):
    # tokenize word
    words = tokenizer.tokenize(caption)

    # add cls token
    words = ["<|startoftext|>"] + words
    total_length_with_CLS = max_words - 1
    if len(words) > total_length_with_CLS:
        words = words[:total_length_with_CLS]

    # add end token
    words = words + ["<|endoftext|>"]

    # convert token to id according to the vocab
    input_ids = tokenizer.convert_tokens_to_ids(words)

    # add zeros for feature of the same length
    input_mask = [1] * len(input_ids)
    while len(input_ids) < max_words:
        input_ids.append(0)
        input_mask.append(0)

    # ensure the length of feature to be equal with max words
    assert len(input_ids) == max_words
    assert len(input_mask) == max_words
    pairs_text = np.array(input_ids).reshape(-1, max_words)
    pairs_text = torch.from_numpy(pairs_text)
    pairs_mask = np.array(input_mask).reshape(-1, max_words)
    pairs_mask = torch.from_numpy(pairs_mask)

    return pairs_text, pairs_mask


def get_args(description='Retrieval Task'):
    parser = argparse.ArgumentParser(description=description)
    parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
    parser.add_argument("--do_params", action='store_true', help="text the params of the model.")
    parser.add_argument("--use_frame_fea", action='store_true', help="whether use frame feature matching text")
    parser.add_argument('--task', type=str, default="retrieval", choices=["retrieval_VT", "retrieval"],
                        help="choose downstream task.")
    parser.add_argument('--dataset', type=str, default="bird", choices=["bird", "msrvtt", "vatex", "msvd"],
                        help="choose dataset.")
    parser.add_argument('--num_thread_reader', type=int, default=1, help='')
    parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
    parser.add_argument('--text_lr', type=float, default=0.00001, help='text encoder learning rate')
    parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
    parser.add_argument('--batch_size', type=int, default=256, help='batch size')
    parser.add_argument('--batch_size_val', type=int, default=3500, help='batch size eval')
    parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
    parser.add_argument('--weight_decay', type=float, default=0.2, help='Learning rate exp epoch decay')
    parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
    parser.add_argument('--seed', type=int, default=42, help='random seed')
    parser.add_argument('--max_words', type=int, default=32, help='')
    parser.add_argument('--max_frames', type=int, default=12, help='')
    parser.add_argument('--top_frames', type=int, default=3, help='')
    parser.add_argument('--frame_sample', type=str, default="uniform", choices=["uniform", "random", "uniform_random"],
                        help='frame sample strategy')
    parser.add_argument('--frame_sample_len', type=str, default="fix", choices=["dynamic", "fix"],
                        help='use dynamic frame length of fix frame length')
    parser.add_argument('--language', type=str, default="chinese", choices=["chinese", "english"],
                        help='language for text encoder')
    parser.add_argument('--use_temp', action='store_true', help='whether to use temporal transformer')

    parser.add_argument("--logdir", default=None, type=str, required=False, help="log dir for tensorboardX writer")
    parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
    parser.add_argument("--pretrained_text", default="hfl/chinese-roberta-wwm-ext", type=str, required=False, help="pretrained_text")
    parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")

    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

    parser.add_argument('--enable_amp', action='store_true', help="whether to use pytorch amp")

    parser.add_argument("--world_size", default=0, type=int, help="distribted training")
    parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
    parser.add_argument("--rank", default=0, type=int, help="distribted training")
    parser.add_argument('--coef_lr', type=float, default=1., help='coefficient for bert branch.')

    args = parser.parse_args()

    # Check paramenters
    args.do_eval = True
    args.use_frame_fea = True
    args.use_temp = True

    return args


def init_model(language):
    time1 = time.time()
    args = get_args()
    args.language = language
    if language == "chinese":
        model_path = "models/Chinese_vatex.bin"
        tokenizer = BertTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext")
    elif language == "english":
        model_path = "models/English_vatex.bin"
        tokenizer = ClipTokenizer()
    else:
        raise Exception("language should be Chinese or English!")
    model_state_dict = torch.load(model_path, map_location='cpu')
    cross_model = "cross-base"
    model = BirdModel.from_pretrained(cross_model, state_dict=model_state_dict, task_config=args)
    device = torch.device("cpu")
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    model.eval()
    print("language={}".format(language))
    print("init model time: {}".format(time.time() - time1))
    print("device:{}".format(device))
    return model, tokenizer


model_zh, tokenizer_zh = init_model(language="chinese")
model_en, tokenizer_en = init_model(language="english")


def t2v_search_zh(text):
    with torch.no_grad():
        time1 = time.time()
        text_ids, text_mask = get_text(text, tokenizer_zh)
        print("get_text time: {}".format(time.time() - time1))
        time1 = time.time()
        text_fea_zh = model_zh.text_encoder(text_ids, text_mask)
        print("text_encoder time: {}".format(time.time() - time1))
        # print("text_fea.shape:{}".format(text_fea.shape))
        # print("video_fea.shape:{}".format(video_fea.shape))
        # print("frame_fea.shape:{}".format(frame_fea.shape))
        time1 = time.time()
        sim_video = model_zh.loose_similarity(text_fea_zh, video_fea_zh)
        # print("sim_video.shape:{}".format(sim_video.shape))
        sim_frame = model_zh.loose_similarity(text_fea_zh, frame_fea_zh)
        # print("sim_frame.shape:{}".format(sim_frame.shape))
        sim_frame = torch.topk(sim_frame, k=model_zh.top_frames, dim=1)[0]
        sim_frame = torch.mean(sim_frame, dim=1)
        sim = sim_video + sim_frame
        value, index = sim.topk(show_num, dim=0, largest=True, sorted=True)
        # value, index = sim_video.topk(show_num, dim=0, largest=True, sorted=True)
        print("calculate_similarity time: {}".format(time.time() - time1))
        print("value:{}".format(value))
        print("index:{}".format(index))
        videoname, videopath = get_videoname(index)
        print("videoname:{}".format(videoname))
        print("videopath:{}".format(videopath))
        return videopath


def t2v_search_en(text):
    with torch.no_grad():
        time1 = time.time()
        text_ids, text_mask = get_text(text, tokenizer_en)
        print("get_text time: {}".format(time.time() - time1))
        time1 = time.time()
        text_fea_en = model_en.text_encoder(text_ids, text_mask)
        print("text_encoder time: {}".format(time.time() - time1))
        # print("text_fea.shape:{}".format(text_fea.shape))
        # print("video_fea.shape:{}".format(video_fea.shape))
        # print("frame_fea.shape:{}".format(frame_fea.shape))
        time1 = time.time()
        sim_video = model_en.loose_similarity(text_fea_en, video_fea_en)
        # print("sim_video.shape:{}".format(sim_video.shape))
        sim_frame = model_en.loose_similarity(text_fea_en, frame_fea_en)
        # print("sim_frame.shape:{}".format(sim_frame.shape))
        sim_frame = torch.topk(sim_frame, k=model_en.top_frames, dim=1)[0]
        sim_frame = torch.mean(sim_frame, dim=1)
        sim = sim_video + sim_frame
        value, index = sim.topk(show_num, dim=0, largest=True, sorted=True)
        # value, index = sim_video.topk(show_num, dim=0, largest=True, sorted=True)
        print("calculate_similarity time: {}".format(time.time() - time1))
        print("value:{}".format(value))
        print("index:{}".format(index))
        videoname, videopath = get_videoname(index)
        print("videoname:{}".format(videoname))
        print("videopath:{}".format(videopath))
        return videopath


def hello_world(name):
    return "hello world, my name is " + name + "!"


def search_demo():
    with gr.Blocks() as demo:
        gr.Markdown("# <div align='center'>HMMC中英文本-视频检索  \
                    <a style='font-size:18px;color: #000000' href='https://github.com/cheetah003/HMMC'> Github </div>")
        demo.title = "HMMC中英文本-视频检索"
        with gr.Tab("中文"):
            with gr.Column(variant="panel"):
                with gr.Row(variant="compact"):
                    input_text = gr.Textbox(
                        label="输入文本",
                        show_label=False,
                        max_lines=1,
                        placeholder="请输入检索文本...",
                    ).style(
                        container=False,
                    )
                    btn = gr.Button("搜索").style(full_width=False)

                with gr.Column(variant="panel", scale=2):
                    with gr.Row(variant="compact"):
                        videos_top = [gr.Video(
                            format="mp4", label="视频 "+str(i+1),
                        ).style(height=300, width=300) for i in range(3)]
                with gr.Column(variant="panel", scale=1):
                    with gr.Row(variant="compact"):
                        videos_rest = [gr.Video(
                            format="mp4", label="视频 "+str(i),
                        ).style(height=150, width=150) for i in range(3, show_num)]

            searched_videos = videos_top + videos_rest
            btn.click(t2v_search_zh, inputs=input_text, outputs=searched_videos)

        with gr.Tab("English"):
            with gr.Column(variant="panel"):
                with gr.Row(variant="compact"):
                    input_text = gr.Textbox(
                        label="input text",
                        show_label=False,
                        max_lines=1,
                        placeholder="Please input text to search...",
                    ).style(
                        container=False,
                    )
                    btn = gr.Button("Search").style(full_width=False)

                with gr.Column(variant="panel", scale=2):
                    with gr.Row(variant="compact"):
                        videos_top = [gr.Video(
                            format="mp4", label="video " + str(i+1),
                        ).style(height=300, width=300) for i in range(3)]
                with gr.Column(variant="panel", scale=1):
                    with gr.Row(variant="compact"):
                        videos_rest = [gr.Video(
                            format="mp4", label="video " + str(i+1),
                        ).style(height=150, width=150) for i in range(3, show_num)]

            searched_videos = videos_top + videos_rest
            btn.click(t2v_search_en, inputs=input_text, outputs=searched_videos)

    demo.launch()


if __name__ == '__main__':
    search_demo()
    # text = "两个男人正在随着音乐跳舞,他们正在努力做着macarena舞蹈的动作。"
    
    # t2v_search(text)