Spaces:
Runtime error
Runtime error
File size: 11,646 Bytes
29c5a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""
import logging
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import math
from modules.until_config import PretrainedConfig
logger = logging.getLogger(__name__)
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
def get_dual_matrix(sim_matrix):
if torch.is_tensor(sim_matrix):
pass
else:
sim_matrix = torch.tensor(sim_matrix)
temp = 1
# sim_matrix = sim_matrix * F.softmax(sim_matrix / temp, dim=0) * len(sim_matrix)
alpha = F.softmax(sim_matrix / temp, dim=0)
beta = F.softmax(sim_matrix / temp, dim=1)
sim_matrix = sim_matrix * alpha * beta
return sim_matrix
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class PreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super(PreTrainedModel, self).__init__()
if not isinstance(config, PretrainedConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of class `PretrainedConfig`. "
"To create a model from a Google pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
if 'beta' in dir(module) and 'gamma' in dir(module):
module.beta.data.zero_()
module.gamma.data.fill_(1.0)
else:
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
def resize_token_embeddings(self, new_num_tokens=None):
raise NotImplementedError
@classmethod
def init_preweight(cls, model, state_dict, prefix=None, task_config=None):
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
if prefix is not None:
old_keys = []
new_keys = []
for key in state_dict.keys():
old_keys.append(key)
new_keys.append(prefix + key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
load(model, prefix='')
if prefix is None and (task_config is None or task_config.local_rank == 0):
logger.info("-" * 20)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from pretrained model: {}"
.format(model.__class__.__name__, "\n " + "\n ".join(missing_keys)))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in {}: {}"
.format(model.__class__.__name__, "\n " + "\n ".join(unexpected_keys)))
if len(error_msgs) > 0:
logger.error("Weights from pretrained model cause errors in {}: {}"
.format(model.__class__.__name__, "\n " + "\n ".join(error_msgs)))
return model
@property
def dtype(self):
"""
:obj:`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
"""
try:
return next(self.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module):
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = self._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
@classmethod
def from_pretrained(cls, config, state_dict=None, *inputs, **kwargs):
"""
Instantiate a PreTrainedModel from a pre-trained model file or a pytorch state dict.
Download and cache the pre-trained model file if needed.
"""
# Instantiate model.
model = cls(config, *inputs, **kwargs)
if state_dict is None:
return model
model = cls.init_preweight(model, state_dict)
return model
##################################
###### LOSS FUNCTION #############
##################################
class CrossEn(nn.Module):
def __init__(self,):
super(CrossEn, self).__init__()
def forward(self, sim_matrix):
logpt = F.log_softmax(sim_matrix, dim=-1)
logpt = torch.diag(logpt)
nce_loss = -logpt
sim_loss = nce_loss.mean()
return sim_loss
class Dual_CrossEn(nn.Module):
def __init__(self,):
super(Dual_CrossEn, self).__init__()
def forward(self, sim_matrix):
sim_matrix = get_dual_matrix(sim_matrix)
logpt = F.log_softmax(sim_matrix, dim=-1)
logpt = torch.diag(logpt)
nce_loss = -logpt
sim_loss = nce_loss.mean()
return sim_loss
class MILNCELoss(nn.Module):
def __init__(self, batch_size=1, n_pair=1,):
super(MILNCELoss, self).__init__()
self.batch_size = batch_size
self.n_pair = n_pair
torch_v = float(".".join(torch.__version__.split(".")[:2]))
self.bool_dtype = torch.bool if torch_v >= 1.3 else torch.uint8
def forward(self, sim_matrix):
mm_mask = np.eye(self.batch_size)
mm_mask = np.kron(mm_mask, np.ones((self.n_pair, self.n_pair)))
mm_mask = torch.tensor(mm_mask).float().to(sim_matrix.device)
from_text_matrix = sim_matrix + mm_mask * -1e12
from_video_matrix = sim_matrix.transpose(1, 0)
new_sim_matrix = torch.cat([from_video_matrix, from_text_matrix], dim=-1)
logpt = F.log_softmax(new_sim_matrix, dim=-1)
mm_mask_logpt = torch.cat([mm_mask, torch.zeros_like(mm_mask)], dim=-1)
masked_logpt = logpt + (torch.ones_like(mm_mask_logpt) - mm_mask_logpt) * -1e12
new_logpt = -torch.logsumexp(masked_logpt, dim=-1)
logpt_choice = torch.zeros_like(new_logpt)
mark_ind = torch.arange(self.batch_size).to(sim_matrix.device) * self.n_pair + (self.n_pair//2)
logpt_choice[mark_ind] = 1
sim_loss = new_logpt.masked_select(logpt_choice.to(dtype=self.bool_dtype)).mean()
return sim_loss
class MaxMarginRankingLoss(nn.Module):
def __init__(self,
margin=1.0,
negative_weighting=False,
batch_size=1,
n_pair=1,
hard_negative_rate=0.5,
):
super(MaxMarginRankingLoss, self).__init__()
self.margin = margin
self.n_pair = n_pair
self.batch_size = batch_size
easy_negative_rate = 1 - hard_negative_rate
self.easy_negative_rate = easy_negative_rate
self.negative_weighting = negative_weighting
if n_pair > 1 and batch_size > 1:
alpha = easy_negative_rate / ((batch_size - 1) * (1 - easy_negative_rate))
mm_mask = (1 - alpha) * np.eye(self.batch_size) + alpha
mm_mask = np.kron(mm_mask, np.ones((n_pair, n_pair)))
mm_mask = torch.tensor(mm_mask) * (batch_size * (1 - easy_negative_rate))
self.mm_mask = mm_mask.float()
def forward(self, x):
d = torch.diag(x)
max_margin = F.relu(self.margin + x - d.view(-1, 1)) + \
F.relu(self.margin + x - d.view(1, -1))
if self.negative_weighting and self.n_pair > 1 and self.batch_size > 1:
max_margin = max_margin * self.mm_mask.to(max_margin.device)
return max_margin.mean()
class AllGather(torch.autograd.Function):
"""An autograd function that performs allgather on a tensor."""
@staticmethod
def forward(ctx, tensor, args):
output = [torch.empty_like(tensor) for _ in range(args.world_size)]
torch.distributed.all_gather(output, tensor)
ctx.rank = args.rank
ctx.batch_size = tensor.shape[0]
return torch.cat(output, dim=0)
@staticmethod
def backward(ctx, grad_output):
return (
grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
None,
)
|