Spaces:
Runtime error
Runtime error
File size: 16,211 Bytes
29c5a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import copy
import json
import math
import logging
import tarfile
import tempfile
import shutil
import sys
import torch
from torch import nn
import torch.nn.functional as F
from .file_utils import cached_path
from .until_config import PretrainedConfig
from .until_module import PreTrainedModel, LayerNorm, ACT2FN
from collections import OrderedDict
from modules.module_clip import build_model, CLIP, convert_weights
from transformers import AutoConfig, AutoModel, RobertaModel, RobertaConfig
logger = logging.getLogger(__name__)
PRETRAINED_MODEL_ARCHIVE_MAP = {}
CONFIG_NAME = 'cross_config.json'
WEIGHTS_NAME = 'cross_pytorch_model.bin'
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class CrossConfig(PretrainedConfig):
"""Configuration class to store the configuration of a `CrossModel`.
"""
pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
config_name = CONFIG_NAME
weights_name = WEIGHTS_NAME
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02):
"""Constructs CrossConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `CrossModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer encoder.
num_attention_heads: Number of attention heads for each attention layer in
the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string) in the
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully connected
layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this model might
ever be used with. Typically set this to something large just in case
(e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
`CrossModel`.
initializer_range: The sttdev of the truncated_normal_initializer for
initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
else:
raise ValueError("First argument must be either a vocabulary size (int)"
"or the path to a pretrained model config file (str)")
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(OrderedDict([
("c_fc", nn.Linear(d_model, d_model * 4)),
("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))
]))
self.ln_2 = LayerNorm(d_model)
self.n_head = n_head
def attention(self, x: torch.Tensor, attn_mask: torch.Tensor):
attn_mask_ = attn_mask.repeat(self.n_head, 1, 1)
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask_)[0]
def forward(self, para_tuple: tuple):
# x: torch.Tensor, attn_mask: torch.Tensor
# print(para_tuple)
x, attn_mask = para_tuple
x = x + self.attention(self.ln_1(x), attn_mask)
x = x + self.mlp(self.ln_2(x))
return (x, attn_mask)
class Transformer(nn.Module):
def __init__(self, width: int, layers: int, heads: int):
super().__init__()
self.width = width
self.layers = layers
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads) for _ in range(layers)])
def forward(self, x: torch.Tensor, attn_mask: torch.Tensor):
# logger.info("x.shpae:{},attn_mask:{}".format(x.shape, attn_mask.shape))
return self.resblocks((x, attn_mask))[0]
class VisualEncoder(nn.Module):
def __init__(self, task_config, cross_config):
super().__init__()
pretrained_clip_name = cross_config.pretrained_clip_name
if task_config.local_rank == 0:
logger.info("pretrained_clip_name:{}".format(pretrained_clip_name))
clip_state_dict = CLIP.get_config(pretrained_clip_name=pretrained_clip_name)
clip = build_model(clip_state_dict, local_rank=task_config.local_rank)
self.use_temp = task_config.use_temp
self.is_vit = copy.deepcopy(clip.vit)
self.visual = copy.deepcopy(clip.visual)
if self.use_temp:
self.temporal_transformer = Transformer(width=cross_config.temporal_hidden_size,
layers=cross_config.temporal_hidden_layers,
heads=cross_config.temporal_attention_heads)
self.frame_position_embeddings = nn.Embedding(cross_config.max_position_embeddings,
cross_config.temporal_hidden_size)
# use clip.transformer to initial temporal_transformer
# for param_1, param_2 in zip(self.temporal_transformer.parameters(), clip.transformer.parameters()):
# param_1.data.copy_(param_2.data) # initialize
# if task_config.local_rank == 0:
# logger.info("clip.positional_embedding:{}".format(clip.positional_embedding))
# self.frame_position_embeddings.weight = copy.deepcopy(clip.positional_embedding)
def forward(self, video, video_frames):
# encode frames
bs, frames, channel, h, w = video.shape
# [bs*frame, 3, 224, 224]
video = video.view(bs * frames, channel, h, w)
# logger.info("video_b.shape:{}, dtype:{}".format(video_b.shape, video_b.dtype))
# logger.info("video_frame[{}]:{}".format(b, video_frame))
visual_hidden = self.encode_image(video, video_frame=frames)
# [bs, frame, hidden_size]
# logger.info("visual_hidden.shape:{}".format(visual_hidden.shape))
visual_hidden = visual_hidden.view(bs, frames, visual_hidden.size(-1))
# logger.info("visual_hidden1.shape:{}".format(visual_hidden.shape))
# get temporal information
visual_hidden_original = visual_hidden
frame_output = visual_hidden_original
if self.use_temp:
seq_length = visual_hidden.size(1)
position_ids = torch.arange(seq_length, dtype=torch.long, device=visual_hidden.device)
# logger.info("position_ids.shape:{}".format(position_ids.shape))
frame_position_embeddings = self.frame_position_embeddings(position_ids)
# logger.info("frame_position_embeddings.shape:{}".format(frame_position_embeddings.shape))
visual_hidden = visual_hidden + frame_position_embeddings
video_mask = torch.ones([bs, frames], device=visual_hidden.device)
extended_video_mask = (1.0 - video_mask.unsqueeze(1)) * -1000000.0
extended_video_mask = extended_video_mask.expand(-1, video_mask.size(1), -1)
visual_hidden = visual_hidden.permute(1, 0, 2) # NLD -> LND
visual_hidden = self.temporal_transformer(visual_hidden, extended_video_mask)
visual_hidden = visual_hidden.permute(1, 0, 2) # LND -> NLD
visual_hidden = visual_hidden + visual_hidden_original
# logger.info("visual_hidden.shape:{}".format(visual_hidden.shape))
visual_output = visual_hidden / visual_hidden.norm(dim=-1, keepdim=True)
# [bs, frames,512] -> [bs, 512]
visual_output = torch.mean(visual_output, dim=1)
# logger.info("visual_hidden mean.shape:{}".format(visual_hidden.shape))
# logger.info("visual encoder visual_output.shape:{}".format(visual_output.shape))
return visual_output, frame_output
@property
def dtype(self):
return self.visual.conv1.weight.dtype
def encode_image(self, image, return_hidden=False, video_frame=-1):
if self.is_vit:
# logger.info("image.shape:{}".format(image.shape))
# hidden = self.visual(image, video_frame=video_frame)
hidden = self.visual(image.type(self.dtype), video_frame=video_frame)
# logger.info("hidden1.shape:{}".format(hidden.shape))
hidden = self.visual.ln_post(hidden) @ self.visual.proj
# logger.info("hidden2.shape:{}".format(hidden.shape))
x = hidden[:, 0, :]
# x = hidden
else:
hidden = self.visual(image)
x = hidden
if return_hidden:
return x.float(), hidden.float()
return x.float()
class TextEncoder(nn.Module):
def __init__(self, task_config, cross_config):
super().__init__()
self.language = task_config.language
pretrained_clip_name = cross_config.pretrained_clip_name
if task_config.local_rank == 0:
logger.info("pretrained_clip_name:{}".format(pretrained_clip_name))
clip_state_dict = CLIP.get_config(pretrained_clip_name=pretrained_clip_name)
clip = build_model(clip_state_dict, local_rank=task_config.local_rank)
self.logit_scale = copy.deepcopy(clip_state_dict["logit_scale"])
if self.language == "english":
self.token_embedding = copy.deepcopy(clip.token_embedding)
self.positional_embedding = copy.deepcopy(clip.positional_embedding)
self.transformer = copy.deepcopy(clip.transformer)
self.ln_final = copy.deepcopy(clip.ln_final)
self.text_projection = copy.deepcopy(clip.text_projection)
self.dtype = clip.visual.conv1.weight.dtype
elif self.language == "chinese":
pretrained = task_config.pretrained_text
t_config = AutoConfig.from_pretrained(pretrained)
if task_config.rank == 0:
logger.info("name:{},chinesebert_config:{}".format(pretrained, t_config))
self.chinese_encoder = AutoModel.from_pretrained(pretrained)
# logger.info("random Roberta")
# self.chinese_encoder = RobertaModel(RobertaConfig())
self.text_proj = nn.Linear(cross_config.chinese_hidden_size, cross_config.temporal_hidden_size)
else:
raise NotImplementedError("wrong language")
def forward(self, input_ids, attention_mask, return_hidden=False):
bs_pair = input_ids.size(0)
if self.language == "english":
text_output, hidden = self.encode_text(input_ids, return_hidden=True)
else:
temp_output = self.chinese_encoder(input_ids, attention_mask=attention_mask)
# logger.info("hidden:{},text_output:{}".format(temp_output[0].shape, temp_output[1].shape))
hidden = self.text_proj(temp_output[0])
text_output = self.text_proj(temp_output[1])
text_output = text_output.view(bs_pair, text_output.size(-1))
hidden = hidden.view(bs_pair, -1, hidden.size(-1))
if return_hidden:
return hidden
else:
return text_output
def encode_text(self, text, return_hidden=False):
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
pos_emd = self.positional_embedding[:x.size(1), :].type(self.dtype)
x = x + pos_emd
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer(x)
x = x.permute(1, 0, 2) # LND -> NLD
hidden = self.ln_final(x).type(self.dtype) @ self.text_projection
# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = hidden[torch.arange(hidden.shape[0]), text.argmax(dim=-1)]
if return_hidden:
return x.float(), hidden.float()
return x.float()
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super(BertLMPredictionHead, self).__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size,bias=False,)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super(BertPredictionHeadTransform, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str) or (
sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)
):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias |