Spaces:
Runtime error
Runtime error
""" | |
Adapted from: https://github.com/openai/CLIP/blob/main/clip/clip.py | |
""" | |
from collections import OrderedDict | |
from typing import Tuple, Union | |
import hashlib | |
import os | |
import urllib | |
import warnings | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
import logging | |
logger = logging.getLogger(__name__) | |
_MODELS = { | |
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", | |
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt", | |
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt", | |
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt", | |
"RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt", | |
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", | |
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt", | |
"ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt", | |
} | |
def _download(url: str, root: str = os.path.expanduser("~/.cache/visual_encoder")): | |
os.makedirs(root, exist_ok=True) | |
filename = os.path.basename(url) | |
expected_sha256 = url.split("/")[-2] | |
download_target = os.path.join(root, filename) | |
if os.path.exists(download_target) and not os.path.isfile(download_target): | |
raise RuntimeError(f"{download_target} exists and is not a regular file") | |
if os.path.isfile(download_target): | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: | |
return download_target | |
else: | |
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") | |
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: | |
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: | |
while True: | |
buffer = source.read(8192) | |
if not buffer: | |
break | |
output.write(buffer) | |
loop.update(len(buffer)) | |
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: | |
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") | |
return download_target | |
def available_models(): | |
"""Returns the names of available CLIP models""" | |
return list(_MODELS.keys()) | |
# ============================= | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1): | |
super().__init__() | |
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 | |
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = None | |
self.stride = stride | |
if stride > 1 or inplanes != planes * Bottleneck.expansion: | |
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 | |
self.downsample = nn.Sequential(OrderedDict([ | |
("-1", nn.AvgPool2d(stride)), | |
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), | |
("1", nn.BatchNorm2d(planes * self.expansion)) | |
])) | |
def forward(self, x: torch.Tensor): | |
identity = x | |
out = self.relu(self.bn1(self.conv1(x))) | |
out = self.relu(self.bn2(self.conv2(out))) | |
out = self.avgpool(out) | |
out = self.bn3(self.conv3(out)) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class AttentionPool2d(nn.Module): | |
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): | |
super().__init__() | |
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) | |
# print("spacial_dim:{},embed_dim:{}".format(spacial_dim, embed_dim)) | |
# print("self.positional_embedding.shape:{}".format(self.positional_embedding.shape)) | |
# print("self.positional_embedding[:, None, :].shape:{}".format(self.positional_embedding[:, None, :].shape)) | |
self.k_proj = nn.Linear(embed_dim, embed_dim) | |
self.q_proj = nn.Linear(embed_dim, embed_dim) | |
self.v_proj = nn.Linear(embed_dim, embed_dim) | |
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) | |
self.num_heads = num_heads | |
def forward(self, x): | |
# logger.info("x1.shape:{}".format(x.shape)) | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC | |
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC | |
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC | |
# logger.info("x2.shape:{}".format(x.shape)) | |
x, _ = F.multi_head_attention_forward( | |
query=x, key=x, value=x, | |
embed_dim_to_check=x.shape[-1], | |
num_heads=self.num_heads, | |
q_proj_weight=self.q_proj.weight, | |
k_proj_weight=self.k_proj.weight, | |
v_proj_weight=self.v_proj.weight, | |
in_proj_weight=None, | |
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), | |
bias_k=None, | |
bias_v=None, | |
add_zero_attn=False, | |
dropout_p=0, | |
out_proj_weight=self.c_proj.weight, | |
out_proj_bias=self.c_proj.bias, | |
use_separate_proj_weight=True, | |
training=self.training, | |
need_weights=False | |
) | |
# logger.info("x3.shape:{}".format(x.shape)) | |
return x[0] | |
# return x | |
class ModifiedResNet(nn.Module): | |
""" | |
A ResNet class that is similar to torchvision's but contains the following changes: | |
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. | |
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 | |
- The final pooling layer is a QKV attention instead of an average pool | |
""" | |
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): | |
super().__init__() | |
self.output_dim = output_dim | |
self.input_resolution = input_resolution | |
# the 3-layer stem | |
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(width // 2) | |
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(width // 2) | |
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(width) | |
self.avgpool = nn.AvgPool2d(2) | |
self.relu = nn.ReLU(inplace=True) | |
# residual layers | |
self._inplanes = width # this is a *mutable* variable used during construction | |
self.layer1 = self._make_layer(width, layers[0]) | |
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) | |
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) | |
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) | |
embed_dim = width * 32 # the ResNet feature dimension | |
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) | |
def _make_layer(self, planes, blocks, stride=1): | |
layers = [Bottleneck(self._inplanes, planes, stride)] | |
self._inplanes = planes * Bottleneck.expansion | |
for _ in range(1, blocks): | |
layers.append(Bottleneck(self._inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
def stem(x): | |
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: | |
x = self.relu(bn(conv(x))) | |
x = self.avgpool(x) | |
return x | |
x = x.type(self.conv1.weight.dtype) | |
x = stem(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
x = self.attnpool(x) | |
return x | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
ret = super().forward(x.type(torch.float32)) | |
return ret.type(orig_type) | |
class QuickGELU(nn.Module): | |
def forward(self, x: torch.Tensor): | |
return x * torch.sigmoid(1.702 * x) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__(self, d_model: int, n_head: int, attn_mask=None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential(OrderedDict([ | |
("c_fc", nn.Linear(d_model, d_model * 4)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 4, d_model)) | |
])) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
attn_mask_ = self.attn_mask | |
if self.attn_mask is not None and hasattr(self.attn_mask, '__call__'): | |
attn_mask_ = self.attn_mask(x.size(0)) # LND | |
attn_mask_ = attn_mask_.to(dtype=x.dtype, device=x.device) if attn_mask_ is not None else None | |
return self.attn(x, x, x, need_weights=False, attn_mask=attn_mask_)[0] | |
def forward(self, x_tuple:tuple): | |
x, video_frame = x_tuple | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return (x, video_frame) | |
class Transformer(nn.Module): | |
def __init__(self, width: int, layers: int, heads: int, attn_mask = None): | |
super().__init__() | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) | |
def forward(self, x: torch.Tensor, video_frame=-1): | |
return self.resblocks((x, video_frame))[0] | |
class VisualTransformer(nn.Module): | |
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, | |
linear_patch: str = '2d',): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.output_dim = output_dim | |
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) | |
scale = width ** -0.5 | |
self.class_embedding = nn.Parameter(scale * torch.randn(width)) | |
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) | |
self.ln_pre = LayerNorm(width) | |
self.transformer = Transformer(width, layers, heads) | |
self.ln_post = LayerNorm(width) | |
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) | |
# For 3D | |
assert linear_patch in ['2d', '3d'] | |
self.linear_patch = linear_patch | |
if self.linear_patch == '3d': | |
self.conv2 = nn.Conv3d(in_channels=3, out_channels=width, kernel_size=(3, patch_size, patch_size), | |
stride=(1, patch_size, patch_size), padding=(1, 0, 0), bias=False) | |
def forward(self, x: torch.Tensor, video_frame=-1): | |
# logger.info("x.shape:{}".format(x.shape)) | |
if self.linear_patch == '3d': | |
assert video_frame != -1 | |
x_3d = x.reshape(-1, video_frame, x.shape[-3], x.shape[-2], x.shape[-1]) | |
x_3d = x_3d.permute(0, 2, 1, 3, 4) | |
x_3d = self.conv2(x_3d) # shape = [*, width, frame, grid, grid] | |
x_3d = x_3d.permute(0, 2, 1, 3, 4) # shape = [*, frame, width, grid, grid] | |
x = x_3d.reshape(-1, x_3d.shape[-3], x_3d.shape[-2], x_3d.shape[-1]).contiguous() # shape = [*, width, grid, grid] | |
else: | |
x = self.conv1(x) # shape = [*, width, grid, grid] | |
# logger.info("x conv1.shape:{}".format(x.shape)) | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + self.positional_embedding.to(x.dtype) | |
x = self.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
# logger.info("x ln_pre.shape:{}".format(x.shape)) | |
x = self.transformer(x, video_frame=video_frame) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
# logger.info("x transformer.shape:{}".format(x.shape)) | |
# Move the three lines below to `encode_image` for entire hidden sequence | |
# x = self.ln_post(x[:, 0, :]) | |
# if self.proj is not None: | |
# x = x @ self.proj | |
return x | |
class CLIP(nn.Module): | |
def __init__(self, | |
embed_dim: int, | |
# vision | |
image_resolution: int, | |
vision_layers: Union[Tuple[int, int, int, int], int], | |
vision_width: int, | |
vision_patch_size: int, | |
# text | |
context_length: int, | |
vocab_size: int, | |
transformer_width: int, | |
transformer_heads: int, | |
transformer_layers: int, | |
# vision linear of patch | |
linear_patch: str = '2d', | |
): | |
super().__init__() | |
self.context_length = context_length | |
if isinstance(vision_layers, (tuple, list)): | |
vision_heads = vision_width * 32 // 64 | |
self.vit = False | |
self.visual = ModifiedResNet( | |
layers=vision_layers, | |
output_dim=embed_dim, | |
heads=vision_heads, | |
input_resolution=image_resolution, | |
width=vision_width | |
) | |
else: | |
self.vit = True | |
vision_heads = vision_width // 64 | |
self.visual = VisualTransformer( | |
input_resolution=image_resolution, | |
patch_size=vision_patch_size, | |
width=vision_width, | |
layers=vision_layers, | |
heads=vision_heads, | |
output_dim=embed_dim, | |
linear_patch=linear_patch | |
) | |
self.transformer = Transformer( | |
width=transformer_width, | |
layers=transformer_layers, | |
heads=transformer_heads, | |
attn_mask=self.build_attention_mask | |
) | |
self.vocab_size = vocab_size | |
self.token_embedding = nn.Embedding(vocab_size, transformer_width) | |
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) | |
self.ln_final = LayerNorm(transformer_width) | |
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) | |
self.logit_scale = nn.Parameter(torch.ones([])) | |
self.initialize_parameters() | |
def initialize_parameters(self): | |
nn.init.normal_(self.token_embedding.weight, std=0.02) | |
nn.init.normal_(self.positional_embedding, std=0.01) | |
if isinstance(self.visual, ModifiedResNet): | |
if self.visual.attnpool is not None: | |
std = self.visual.attnpool.c_proj.in_features ** -0.5 | |
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) | |
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) | |
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: | |
for name, param in resnet_block.named_parameters(): | |
if name.endswith("bn3.weight"): | |
nn.init.zeros_(param) | |
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) | |
attn_std = self.transformer.width ** -0.5 | |
fc_std = (2 * self.transformer.width) ** -0.5 | |
for block in self.transformer.resblocks: | |
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) | |
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) | |
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) | |
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) | |
if self.text_projection is not None: | |
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) | |
def get_config(pretrained_clip_name="ViT-B/32"): | |
# logger.info("pretrained_clip_name:{}".format(pretrained_clip_name)) | |
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "ViT-B-32.pt") | |
if pretrained_clip_name == "ViT-B/32" and os.path.exists(model_path): | |
pass | |
else: | |
if pretrained_clip_name in _MODELS: | |
model_path = _download(_MODELS[pretrained_clip_name]) | |
elif os.path.isfile(pretrained_clip_name): | |
model_path = pretrained_clip_name | |
else: | |
raise RuntimeError(f"Model {pretrained_clip_name} not found; available models = {available_models()}") | |
try: | |
# loading JIT archive | |
model = torch.jit.load(model_path, map_location="cpu").eval() | |
state_dict = model.state_dict() | |
except RuntimeError: | |
state_dict = torch.load(model_path, map_location="cpu") | |
return state_dict | |
def build_attention_mask(self, context_length): | |
# lazily create causal attention mask, with full attention between the vision tokens | |
# pytorch uses additive attention mask; fill with -inf | |
mask = torch.zeros(context_length, context_length) | |
mask.fill_(float("-inf")) | |
mask.triu_(1) # zero out the lower diagonal | |
return mask | |
def dtype(self): | |
return self.visual.conv1.weight.dtype | |
def encode_image(self, image, return_hidden=False, video_frame=-1): | |
if self.vit: | |
# logger.info("image.shape:{}".format(image.shape)) | |
hidden = self.visual(image.type(self.dtype), video_frame=video_frame) | |
# logger.info("hidden1.shape:{}".format(hidden.shape)) | |
hidden = self.visual.ln_post(hidden) @ self.visual.proj | |
# logger.info("hidden2.shape:{}".format(hidden.shape)) | |
x = hidden[:, 0, :] | |
# x = hidden | |
else: | |
hidden = self.visual(image.type(self.dtype)) | |
x = hidden | |
if return_hidden: | |
return x, hidden | |
return x | |
def encode_text(self, text, return_hidden=False): | |
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] | |
pos_emd = self.positional_embedding[:x.size(1), :].type(self.dtype) | |
x = x + pos_emd | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
hidden = self.ln_final(x).type(self.dtype) @ self.text_projection | |
# x.shape = [batch_size, n_ctx, transformer.width] | |
# take features from the eot embedding (eot_token is the highest number in each sequence) | |
x = hidden[torch.arange(hidden.shape[0]), text.argmax(dim=-1)] | |
if return_hidden: | |
return x, hidden | |
return x | |
def forward(self, image, text): | |
image_features = self.encode_image(image) | |
text_features = self.encode_text(text) | |
# normalized features | |
image_features = image_features / image_features.norm(dim=-1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |
# cosine similarity as logits | |
logit_scale = self.logit_scale.exp() | |
logits_per_image = logit_scale * image_features @ text_features.t() | |
logits_per_text = logit_scale * text_features @ image_features.t() | |
# shape = [global_batch_size, global_batch_size] | |
return logits_per_image, logits_per_text | |
def convert_weights(model: nn.Module): | |
"""Convert applicable model parameters to fp16""" | |
def _convert_weights_to_fp16(l): | |
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
if isinstance(l, nn.MultiheadAttention): | |
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: | |
tensor = getattr(l, attr) | |
if tensor is not None: | |
tensor.data = tensor.data.half() | |
for name in ["text_projection", "proj"]: | |
if hasattr(l, name): | |
attr = getattr(l, name) | |
if attr is not None: | |
attr.data = attr.data.half() | |
model.apply(_convert_weights_to_fp16) | |
def build_model(state_dict: dict, local_rank): | |
vit = "visual.proj" in state_dict | |
if vit: | |
vision_width = state_dict["visual.conv1.weight"].shape[0] | |
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) | |
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] | |
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) | |
image_resolution = vision_patch_size * grid_size | |
else: | |
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] | |
vision_layers = tuple(counts) | |
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] | |
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) | |
vision_patch_size = None | |
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] | |
image_resolution = output_width * 32 | |
embed_dim = state_dict["text_projection"].shape[1] | |
context_length = state_dict["positional_embedding"].shape[0] | |
vocab_size = state_dict["token_embedding.weight"].shape[0] | |
transformer_width = state_dict["ln_final.weight"].shape[0] | |
transformer_heads = transformer_width // 64 | |
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) | |
if local_rank == 0: | |
logger.info("\t embed_dim: {}".format(embed_dim)) | |
logger.info("\t image_resolution: {}".format(image_resolution)) | |
logger.info("\t vision_layers: {}".format(vision_layers)) | |
logger.info("\t vision_width: {}".format(vision_width)) | |
logger.info("\t vision_patch_size: {}".format(vision_patch_size)) | |
logger.info("\t context_length: {}".format(context_length)) | |
logger.info("\t not used vocab_size: {}".format(vocab_size)) | |
logger.info("\t transformer_width: {}".format(transformer_width)) | |
logger.info("\t transformer_heads: {}".format(transformer_heads)) | |
logger.info("\t transformer_layers: {}".format(transformer_layers)) | |
model = CLIP( | |
embed_dim, | |
image_resolution, vision_layers, vision_width, vision_patch_size, | |
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers | |
).float() | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
if key in state_dict: | |
del state_dict[key] | |
# convert_weights(model) # cpu mode should comment this line | |
model.load_state_dict(state_dict) | |
# return model.eval() | |
return model | |